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Vol. 69. E. Piętka and J. Kawa (Eds.)
Information Technologies in Biomedicine, 2010
ISBN 978-3-642-13104-2

Vol. 70. XXX

Vol. 71. XXX

Vol. 72. J.C. Augusto, J.M. Corchado,
P. Novais, C. Analide (Eds.)
Ambient Intelligence and Future Trends, 2010
ISBN 978-3-642-13267-4

Vol. 73. J.M. Corchado, P. Novais,
C. Analide, J. Sedano (Eds.)
Soft Computing Models in Industrial and
Environmental Applications, 5th International
Workshop (SOCO 2010), 2010
ISBN 978-3-642-13160-8

Vol. 74. M.P. Rocha, F.F. Riverola, H. Shatkay,
J.M. Corchado (Eds.)
Advances in Bioinformatics
ISBN 978-3-642-13213-1



Miguel P. Rocha,
Florentino Fernández Riverola, Hagit Shatkay,
and Juan Manuel Corchado (Eds.)

Advances in Bioinformatics

4th International Workshop on Practical
Applications of Computational Biology
and Bioinformatics 2010 (IWPACBB 2010)

ABC



Editors

Miguel P. Rocha
Dep. Informática / CCTC
Universidade do Minho
Campus de Gualtar
4710-057 Braga
Portugal

Florentino Fernández Riverola
Escuela Superior de
Ingeniería Informática
Edificio Politécnico,
Despacho 408
Campus Universitario
As Lagoas s/n
32004 Ourense
Spain
E-mail: riverola@ei.uvigo.es

Hagit Shatkay
Computational Biology and
Machine Learning Lab
School of Computing
Queen’s University Kingston
Ontario K7L 3N6
Canada
E-mail: shatkay@cs.queensu.ca

Juan Manuel Corchado
Departamento de Informática
y Automática
Facultad de Ciencias
Universidad de Salamanca
Plaza de la Merced S/N
37008 Salamanca
Spain
E-mail: corchado@usal.es

ISBN 978-3-642-13213-1 e-ISBN 978-3-642-13214-8

DOI 10.1007/978-3-642-13214-8

Advances in Intelligent and Soft Computing ISSN 1867-5662

Library of Congress Control Number: 2010928117

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

5 4 3 2 1 0

springer.com



Preface 

The fields of Bioinformatics and Computational Biology have been growing 
steadily over the last few years boosted by an increasing need for computational 
techniques that can efficiently handle the huge amounts of data produced by the 
new experimental techniques in Biology. This calls for new algorithms and ap-
proaches from fields such as Data Integration, Statistics, Data Mining, Machine 
Learning, Optimization, Computer Science and Artificial Intelligence. 

Also, new global approaches, such as Systems Biology, have been emerging 
replacing the reductionist view that dominated biological research in the last dec-
ades. Indeed, Biology is more and more a science of information needing tools 
from the information technology field. The interaction of researchers from differ-
ent scientific fields is, more than ever, of foremost importance and we hope this 
event will contribute to this effort.  

IWPACBB'10 technical program included a total of 30 papers (26 long papers 
and 4 short papers) spanning many different sub-fields in Bioinformatics and 
Computational Biology. Therefore, the technical program of the conference will 
certainly be diverse, challenging and will promote the interaction among computer 
scientists, mathematicians, biologists and other researchers. 

We would like to thank all the contributing authors, as well as the members of 
the Program Committee and the Organizing Committee for their hard and highly 
valuable work. Their work has helped to contribute to the success of the 
IWAPCBB’10 event. IWPACBB’10 wouldn’t exist without your contribution. 

Miguel Rocha 
Florentino Fernández Riverola 
IWPACBB’10 Organizing Co-chairs

Juan Manuel Corchado 
Hagit Shatkay 

IWPACBB’10 Programme Co-chairs
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Improving Cross Mapping in Biomedical Databases . . . . . . . . . . 69
Joel Arrais, João E. Pereira, Pedro Lopes, Sérgio Matos,
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Maŕıa Jesús Garćıa-Pereira, Armando Caballero, Humberto Quesada

Employing Compact Intra-Genomic Language Models
to Predict Genomic Sequences and Characterize Their
Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Sérgio Deusdado, Paulo Carvalho

Biomedical Applications

Structure Based Design of Potential Inhibitors of Steroid
Sulfatase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Elisangela V. Costa, M. Emı́lia Sousa, J. Rocha,
Carlos A. Montanari, M. Madalena Pinto

Agent-Based Model of the Endocrine Pancreas and
Interaction with Innate Immune System . . . . . . . . . . . . . . . . . . . . . 157
Ignacio V. Mart́ınez Espinosa, Enrique J. Gómez Aguilera,
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José P. Faria, Miguel Rocha, Rick L. Stevens, Christopher S. Henry

Enhancing Elementary Flux Modes Analysis Using
Filtering Techniques in an Integrated Environment . . . . . . . . . . 217
Paulo Maia, Marcellinus Pont, Jean-François Tomb, Isabel Rocha,
Miguel Rocha

Genome Visualization in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
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Highlighting Differential Gene Expression 
between Two Condition Microarrays through 
Heterogeneous Genomic Data: Application to 
Lesihmania infantum Stages Comparison 

Liliana López Kleine and Víctor Andrés Vera Ruiz 

1 

Abstract. Classical methods for the detection of gene expression differences be-
tween two microarray conditions often fail to detect interesting and important  
differences, because they are weak in comparison with the overall variability. 
Therefore, methodologies that highlight weak differences are needed. Here, we 
propose a method that allows the fusion of other genomic data with microarray 
data and show, through an example on L. infantum microarrays comparing pro-
mastigote and amastigote stages, that differences between the two microarray 
conditions are highlighted. The method is flexible and can be applied to any  
organism for which microarray and other genomic data is available. 

1   Introduction 

Protozoan of the genus Leishmania are parasites that are transmitted by blood-
feeding insect vectors to mammalian hosts, and cause a number of important hu-
man diseases, collectively referred as leishmaniasis. During their life cycle, these 
parasites alternate between two major morphologically distinct developmental 
stages. In the digestive tract of the sandfly vector, they exist as extracellular elon-
gated, flagellated, and motile promastigotes that are exposed to pH 7 and fluctuat-
ing temperatures averaging 25ºC. Upon entry into a mammalian host, they reside 
in mononuclear phagocytes or macrophages (37ªC), wherein they replicate as cir-
cular, aflagellated and non-motile amastigotes. In order to survive, these two ex-
treme environments, Leishmania sp. (L. sp) has developed regulatory mechanisms 
that result in important morphological and biochemical adaptations [1, 2, 3]. 

                                                           
1 Liliana López Kleine . Victor Andrés Vera Ruiz 
Universidad Nacional de Colombia (Sede Bogotá), Cra 30, calle 45, Statistics Department 
e-mail: llopezk@unal.edu.co, vaverar@unal.edu.co 
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Microarray studies allow measuring the expression level of thousands of genes 
at the same time by just one hybridization experiment and the comparison of two 
conditions (here the development stages of L. Sp.). Several microarray analyses 
have been done to study global gene expression in developmental stages of L. sp. 
[3, 4, 5]. Results show that L. sp genome can be considered to be constitutively 
expressed, as more than 90% of the genes is expressed in the same amount in both 
stages, and that only a limited number (7-9.3%) of genes show stage-specific ex-
pression [3, 6]. Furthermore, no metabolic pathway or cell function characteristic 
of any stage has been detected [3, 4, 6, 7, 8, 9]. This is an astonishing result be-
cause morphological and physiological differences between the two stages are 
huge, indicating that different specialized stage proteins are needed and therefore 
gene expression should change. In order to explain the weak differences in  
gene expression between both stages, it has been proposed that regulations and 
adaptations take place after translation and not at the gene expression level [10].  

The detection of gene expression differences has been of great interest [11], as 
an understanding of the adaptation and resistance factors of Leishmania sp. can 
provide interesting therapeutic targets. Analytical methods used until now, even 
improved ones such as the Gene Set Enrichment Analysis [13], have difficulties in 
the determination of differences between gene expression in both L. sp. life cycle 
stages because in the context of global gene expression variation, the detection of 
weak differences is not possible using classical methods. Microarray data analysis 
can still be improved if a way to highlight weak differences in gene expression  
between L. sp. stages is found.  

The present method consists of using additional information to the microarrays 
to achieve this. It allows incorporating different genomic and post-genomic data 
(positions of genes on the chromosome, metabolic pathways, phylogenetic pro-
files, etc.) to detect differences between two experimental microarray conditions 
The method can be applied to detect gene expression differences between any two 
conditions and for all completely sequenced organisms if genomic data are  
available. It will be especially useful for the comparison of conditions in which 
apparently, using classical methods, gene expression seems small. 

To apply the proposed strategy, four steps need to be taken: i) Database con-
struction of the genomic data for the same genes that are present on the microarray, 
ii) kernel construction and parameter estimation, iii) determination of differences in 
gene expression between two microarray conditions at the kernel level, and iv)  
interpretation of differences in regard of the original microarray data.  

In the present work, we apply the proposed methodology to determine differ-
ences between L. infantum amastigotes and promastigotes microarray data ob-
tained by Rochette et al [3]. The methodology is proposed for all genes of a  
microarray data set. Nevertheless, taking into account the interest in determining 
adaptation and defense mechanisms in the pathogen, we concentrated on genes 
that could explain the adaptation and resistance of L. sp. to the environmental 
changes between a promastigote and an amastigote. Therefore, we searched pri-
marily for changes in expression of 180 known and putative transport proteins and 
stress factors. 



Highlighting Differential Gene Expression between Two Condition Microarrays  3
 

2   Methodology 

2.1   Data Base Construction of Microarray and Genomic Data 

2.1.1   Microarrays 
The data used are microarray data from Rochette et al. [3]. From these data, we 
extracted only the expression data comparing promastigotes and amastigotes of L. 
infantum (8317 genes for 14 replicates). Microarray data was downloaded from 
the NCBI’s GEO Datasets [14] (accession number GSE10407). We worked with 
normalized and log2 transformed gene expression intensities from the microarray 
data obtained by Rochette and colleagues [3].  

2.1.2   Phylogenetic Profiles 
They were constructed using the tool Roundup proposed by DeLuca et al [15] 
(http://rodeo.med.harvard.edu/tools/roundup) which allows the extraction of the 
presence or absence of all genes of an organism in other organisms chosen by the 
user. The result can be retrieved as a phylogenetic profile matrix of presence and 
absence (0,1) of each L. sp. gene in the genomes of the other organisms. We  
generated a phylogenetic profile matrix for 30 organisms(1) and 2599 genes of  
L. infantum sharing common genes. 

(1)A._thaliana, Bacillus_subtilis, C._elegans, Coxiella_burnetii (Cb), 
Cb_CbuG_Q212, Cb_Dugway_7E9-12, Cb_RSA_331, D._melanogaster, Enterobac-
ter_638, E._faecalis_V583, Escherichia_coli_536, H._sapiens, Lactobacil-
lus_plantarum,  Lactococcus._lactis, Listeria_innocua, L._monocytogenes, Mycobac-
terium_bovis, M._leprae, Nostoc_sp, P._falciparum, Pseudomonas_putida_KT2440, 
S._cerevisiae, Salmonella_enterica_Paratypi_ATCC_9150, Staphylococ-
cus_aureus_COL, Staphylococcus_epidermidis_ATCC_12228, Streptococ-
cus_mutans, S._pyogenes_MGAS10394, S._pyogenes_MGAS10750, T._brucei, 
V._cholerae 

2.1.3   Presence of Genes on Chromosomes 
For the same 8317 genes we obtained the presence of each of them on the 36 
chromosomes of L. infantum. This information was obtained directly from the 
gene name as registered in NCBI (http://www.ncbi.nlm.nih.gov/) and used to con-
struct a presence and absence (0,1) table for each gene in each chromosome (8317 
x 36). 

2.1.4   Genes of Interest 
We constructed a list of 180 genes coding for known or putative transporters  
and stress factors annotated with these functions in GeneDB 
(http://www.genedb.org//genedb/).  

Once all data types were obtained, determining genes present in all databases 
was done automatically using functions written in R [16]. Without taking into ac-
count the 180 genes of interest, 2092 genes were common to microarrays, pres-
ence on the chromosomes and phylogenetic profiles. Using only the 180 genes of 
interest, we obtained a list of 161 genes common to all 3 datasets.  
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2.2   Kernel Construction 

We built a kernel similarity matrix for each data type. These representations allow 
the posterior fusion of heterogeneous data. Data are not represented individually, 
but through the pair-wise comparison of objects (here 161 genes). The comparison 
is expressed as the similarity between objects through the data.  A comparison 
function of type RXXk →×:  is used and the data are represented by a 

nn ×  comparison matrix: ),(, jiji xxkk = [17]. Kernels are semi definite posi-

tive matrices, and can be used in several kernel algorithms [17]. There are differ-
ent ways to construct a kernel. The simplest kernels are linear and Gaussian. They 
have been used for genomic and post-genomic data in previous works, which 
aimed to infer biological knowledge by the analysis of heterogeneous data [18].  

We built Gaussian kernels for all data-types: ( )
( )

22

,

,
σ

ji xxd

ji exxk
−

= ,where σ is a 

parameter and d is an Euclidian distance. The constructed kernels were: KA1 for 
the gene expression data on amastigotes, KP1 for the gene expression data on  
promastigotes, K2 for the phylogenetic profiles and K3 for the presence on the 
chromosomes. The parameters associated to each kernel were sigma1A, sigma1P, 
sigma2, sigma3. 

Then, we constructed two unique kernels KA1sum and KP1sum for the gene expres-
sion data together with the other types of data by addition: 

33221),(11),( KwKwKwK PAsumPA ++= , where w are weights and considered 

also as parameters.   
Taking into account the objectives of the present work (detection of gene ex-

pression differences between amastigote and promastigote microarray), parame-
ters sigma and w were found using a search algorithm evaluating all combination 
of parameters, that optimized the difference between KA1sum and KP1sum. The crite-
rion was the minimum covariance between both kernels. The values tested for σ 
were: 0.01,0.1,0.5,1,10,15,50 and the values tested for w were 0,0.1,0.5,0.9.   

2.3   Detection of Differences between Amastigote and 
Promastigote Gene Expression 

Differences in similarity and gene expression 

Kernels KA1sum and KP1sum were compared to detect differences in gene expression 
between both L. infantum stages by computing a Dif matrix as follows: Dif = 
KA1sum - KP1sum. The resulting matrix values were ordered, and those with higher 
value than a certain threshold were retained. The same was done for the kernels 
without integration of other data types, the ones constructed only based on the mi-
croarray data:  KA1 and KP1. Two thresholds used were: 10% (T1) and 20% (T2) of 
the maximum distance value found in Dif. 

Subsequently, a list of pairs of genes implicated in each change of similarity is 
generated. To interpret this change in similarity we returned to the original  
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microarray data and calculated the sum of gene expression intensities in each con-
dition. This allows to determine which one of the two genes is responsible for the 
similarity change and finally to identify potential targets that explain the  
differences that occur for L. infantum adaptations during its life cycle. R code is 
available under request: llopezk@unal.edu.co. 

The most interesting targets (which show the highest difference or are present 
repeatedly on the list), are candidates to perform wet-lab experiments. 

3   Results and Discussion 

The parameters that were determined by the search algorithm to maximize differ-
ences between amastigote and promastigote gene expression are shown in table 1. 

Table 1 Parameters obtained optimizing differences between amastigote and promastigote 
gene expression 

Kernel KA1 KP1 K2 K3 

Sigma 1 1 15 50 

Weight 0.9 0.9 0 0.1 

 
K2 seemed not to be useful to highlight the differences between gene expres-

sions in both stages. Nevertheless, phylogenetic profiles have shown to be infor-
mative in other studies, i.e., for the determination of protein functions [18, 19]. It 
is possible that either phylogenetic profiles are definitely not useful to highlight 
the differences between the two conditions analyzed here, or that the organisms 
that were chosen to construct the profiles are phylogenetically too distant from L. 
infantum and therefore poorly informative. The fact that only a few genes are pre-
sent in most of them (data not shown), corroborates the second explanation and 
opens the possibility that phylogenetic profiles could be useful if appropriate  
organisms were chosen.  

The result of the parameter search leaves only the K3 kernel with a low weight 
(0.1) to be added to the microarray data kernels. This indicates that apparently the 
fusion with data other than microarrays is not useful. Nevertheless, the results ob-
tained when similarity changes were detected indicates that including K3 is indeed 
useful. The differences detected between KA1 and KP1 (based only on microarray 
data) implicate a change in only 10 similarities for threshold 1 (T1) and 44 
changes for T2 using the 161×161 kernel. The fusion with K3 allows the detection 
of more differences: 14 for T1 and 61 for T2. The 14 gene pairs which show simi-
larity changes for above T1 in the fusion kernels are shown in Table 2. As the be-
havior of the genes of interest should be regarded in the context of all the genes, 
the position of these similarity changes when all genes (2092) are analyzed is im-
portant. Using these 2092, 1924 similarity changes are detected above T1. The po-
sition (Pos) in the 1924 list of genes of interest is also indicated in Table 2 for 
comparison. 
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4   Conclusions and Future Work 

It is important to point out that the use of genomic data to highlight differences be-
tween two microarray conditions is possible and easy to implement via the use of 
kernels. The flexibility of kernels allows the fusion of very different types of data, 
as only the comparison of objects needs to be computed. Depending on the bio-
logical question behind the study, other types of data such as information on Clus-
ters of Orthologous Groups (COGs) or physical interaction between proteins  
obtained from two-hybrid data could be included. Graph metabolic pathway in-
formation could be very informative and a kernel for graphs has been already  
proposed [20]. 

Differences between two microarray conditions are highlighted by the fusion 
with other types of data. Nevertheless, the usefulness of genomic data depends on 
their quality and information content. In our example, the phylogenetic profiles 
appeared to be useless in highlighting information. Use of more informative  
organisms to construct the phylogenetic profiles needs to be investigated.  

Table 2 List of 14 gene pair similarity changes between amastigote (KA1sum) and promas-
tigote (KP1sum) microarray data highlighted through the fusion with data on the presence of 
genes on chromosomes (K3). AMA and PRO: sum of gene expression of each gene in the 
amasigote microarray (AMA) or promastigote microarray (PRO). Pos: position of similarity 
changes in the 2092×2092 kernel (1924 similarity changes above T1). P: gene annotated as 
putative. Hpc: hypothetical conserved protein 

Gene pair with similarity change in KA1sum vs. KP1sum Pos AMA PRO AMA PRO 

Gene1  Gene2   Gene1 Gene1 Gene2 Gene2 

LinJ07.0700 vacuolar-type 

Ca2+ATPase, P 

LinJ34.2780 Hpc 16 -1,68 -1,84 -3,42 -3,57 

LinJ08.1020 stress-induced sti1 LinJ35.2730 Hpc 35 -3,98 -3,18 1,98 4,22 

LinJ09.0960 ef-hand prot. 5, P LinJ23.0290 multidrug resist.  P 86 -1,67 -2,36 -2,47 -2,57 

LinJ14.0270  LinJ23.0430 ABC trans.-like  287 -3,65 -2,55 -0,29 -0,98 

LinJ14.0270 Hpc LinJ24.1180 Hpc 459 -3,65 -2,55 20,31 26,54 

LinJ14.0270 Hpc LinJ25.1000 Hpc 569 -3,65 -2,55 -4,82 -4,71 

LinJ14.1040 Hpc LinJ33.0340 ATP-bin.  P 752 -1,91 -1,01 4,37 6,27 

LinJ17.0420 Hpc LinJ35.2730 Hpc 769 -4,28 -4,41 1,98 4,22 

LinJ20.1230 calpain-like cyste-

ine pept., P (clcp) 

LinJ28.2230 Hpc 865 -3,97 -3,87 -0,06 -0,6 

LinJ20.1250 Clcp LinJ35.2730 Hpc 923 -4,12 -3,98 1,98 4,22 

LinJ21.1900 calcineurin B  

subunit, P 

LinJ35.2730 Hpc 965 -4,01 -3,87 1,98 4,22 

LinJ22.0050 Hpc LinJ35.2730 Hpc 1002 -3,43 -3,35 1,98 4,22 

LinJ31.1790 Hpc LinJ35.2730 Hpc 1036 -4,39 -4,12 1,98 4,22 

LinJ35.2730 Hpc LinJ33.2130 Clcp 1782 1,98 4,22 -3,95 -3,83 
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The present work opens the possibility of implementing a kernel method that 
will allow determining differences in a more precise way once the data are fused. 
The detection of differences can be improved in several ways. Here, only a pre-
liminary and very simple comparison of similarities is proposed. The kernel 
method could be based on multidimensional scaling via the mapping of both  
kernels on a common space that could allow the measure of distances between 
similarities on that space. 

Although differences between kernels are ordered, having a probability associ-
ated to each difference would be useful. This could be achieved by a bootstrapping 
procedure or a matrix permutation test. 
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An Experimental Evaluation of a Novel 
Stochastic Method for Iterative Class  
Discovery on Real Microarray Datasets 

Héctor Gómez, Daniel Glez-Peña, Miguel Reboiro-Jato, Reyes Pavón, 
Fernando Díaz, and Florentino Fdez-Riverola 

1 

Abstract. Within a gene expression matrix, there are usually several particular 
macroscopic phenotypes of samples related to some diseases or drug effects, such 
as diseased samples, normal samples or drug treated samples. The goal of sample-
based clustering is to find the phenotype structures of these samples. A novel 
method for automatically discovering clusters of samples which are coherent from 
a genetic point of view is evaluated on publicly available datasets. Each possible 
cluster is characterized by a fuzzy pattern which maintains a fuzzy discretization 
of relevant gene expression values. Possible clusters are randomly constructed and 
iteratively refined by following a probabilistic search and an optimization schema. 

Keywords: microarray data, fuzzy discretization, gene selection, fuzzy pattern, 
class discovery, simulated annealing. 

1   Introduction 

Following the advent of high-throughput microarray technology it is now possible 
to simultaneously monitor the expression levels of thousands of genes during  
important biological processes and across collections of related samples. In this 
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context, sample-based clustering is one of the most common methods for discov-
ering disease subtypes as well as unknown taxonomies. By revealing hidden struc-
tures in microarray data, cluster analysis can potentially lead to more tailored 
therapies for patients as well as better diagnostic procedures. 

From a practical point of view, existing sample-based clustering methods can be 
(i) directly applied to cluster samples using all the genes as features (i.e., classical 
techniques such as K-means, SOM, HC, etc.) or (ii) executed after a set of informa-
tive genes are identified. The problem with the first approach is the signal-to-noise 
ratio (smaller than 1:10), which is known to seriously reduce the accuracy of cluster-
ing results due to the existence of noise and outliers of the samples [1]. To overcome 
such difficulties, particular methods can be applied to identify informative genes  
and reduce gene dimensionality prior to clustering samples in order to detect their 
phenotypes. In this context, both supervised and unsupervised informative gene  
selection techniques have been developed. 

While supervised informative gene selection techniques often yield high clus-
tering accuracy rates, unsupervised informative gene selection methods are more 
complex because they assume no a priori phenotype information being assigned to 
any sample [2]. In such a situation, two general strategies have been adopted to 
address the lack of prior knowledge: (i) unsupervised gene selection, this aims to 
reduce the number of genes before clustering samples by using appropriate statis-
tical models and (ii) interrelated clustering, that takes advantage of utilizing the re-
lationship between the genes and samples to perform gene selection and sample 
clustering simultaneously in an iterative paradigm. Following the second strategy 
for unsupervised informative gene selection (interrelated clustering), Ben-Dor et 
al. [3] present an approach based on statistically scoring candidate partitions ac-
cording to the overabundance of genes that separate the different classes. Xing and 
Karp [1] use a feature filtering procedure for ranking features according to their 
intrinsic discriminability and irredundancy to other relevant features. Their clus-
tering algorithm is based on the concept of a normalized cut for grouping samples 
in new reference partition. Von Heydebreck et al. [4] and Tang et al. [5] propose 
algorithms for selecting sample partitions and corresponding gene sets by defining 
an indicator of partition quality and a search procedure to maximize this parame-
ter. Varma and Simon [6] describe an algorithm for automatically detecting clus-
ters of samples that are discernable only in a subset of genes. 

In this contribution we are focused in the evaluation a novel simulated anneal-
ing-based algorithm for iterative class discovery. The rest of the paper is structured 
as follows: Section 2 sketches the proposed method and introduces the relevant as-
pects of the technique. Section 3 presents the experimental setup carried out and  
the results obtained from a publicly available microarray data set. Section 4 com-
prises a discussion about the obtained results by the proposed technique. Finally,  
Section 5 summarizes the main conclusions extracted from this work. 

2   Overview of the Iterative Class Discovery Algorithm 

In this article we propose a simulated annealing-based algorithm for iterative class 
discovery that uses a novel fuzzy logic method for informative gene selection. The  
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interrelated clustering process carried out is based on an iterative approach where 
possible clusters are randomly constructed and evaluated by following a probabilistic 
search and an optimization schema.  

 

Fig. 1 Overview of the iterative class discovery method 

Our clustering technique is not based on the distance between the microarrays 
belonging to each given cluster, but rather on the notion of genetic coherence of 
its own clusters. The genetic coherence of a given partition is calculated by taking 
into consideration the genes which share the same expression value through all the 
samples belonging to the cluster (which we term a fuzzy pattern), but discarding 
those genes present due to pure chance (herein referred to noisy genes of a fuzzy 
pattern). The proposed clustering technique combines both (i) the simplicity and 
good performance of a heuristic search method able to find good partitions in the 
space of all possible partitions of the set of samples with (ii) the robustness of 
fuzzy logic, able to cope with several levels of uncertainty and imprecision by us-
ing partial truth values. A global view of the proposed method is sketched in  
Figure 1. This figure shows how from the fuzzy discretization of the microarrays 
from raw dataset the method performs a stochastic search, looking for a “good 
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partition” of microarrays in order to maximize the genetic coherence of each one 
cluster within the tentative partition.  

3   Experimental Results 

In this Section we evaluate the proposed algorithm on two public microarray data-
sets, herein referred to as HC-Salamanca dataset [7] and Armstrong dataset [8]. 

3.1   The HC-Salamanca Dataset 

This dataset consists of bone marrow samples from 43 adult patients with de novo 
diagnosed acute myeloid leukemia (AML) – 10 acute promyelocytic leukemias 
(APL) with t(15;17), 4 AML with inv(16), 7 monocytic leukemias and 22 non-
monocytic leukemias, according to the WHO classification. All samples contained 
more than 80% blast cells and they were analyzed using high-density oligonucleo-
tide microarrays (specifically, the Affymetrix GeneChip Human Genome U133A 
Array) [7]. In [7], hierarchical clustering analysis segregated APL, AML with 
inv(16), monocytic leukemias and the remaining AML into separate groups, so we 
consider this partition as the reference classification for validating our proposed 
technique in the following experimentation.  

As each execution of the simulated annealing algorithm gives a different result 
(due the stochastic nature of the search), then for each available microarray has 
been computed the percentage of the times that it has been grouped together with 
other microarrays belonging to the reference groups (APL, AML with inversion, 
Monocytic and Other AML) in ten executions of the whole algorithm. The per-
centage of times (on average) in which microarrays of each reference cluster have 
been grouped together with microarrays belonging to different classes is shown in 
each row of Table 1. This table can be interpreted as a confusion matrix numeri-
cally supporting the facts commented above, since the APL and Other-AML 
groups are the better identified pathologies (in an average percentage of 76.19% 
and 77.12% for all their samples and runs of the algorithm), followed by the 
monocytic leukemias (with an average percentage of 51.73%). As mentioned 
above, the group of AML with inversion is confused in a mean percentage of 
33.66% and 32.06% with samples from monocytic and Other-AML groups, re-
spectively. If we consider that the highest percentage for each microarray deter-
mines the cluster to which it belongs, the final clustering obtained by our simu-
lated annealing-based algorithm is shown in Table 2. 

Table 1 Confusion matrix for the HC-Salamanca dataset 

  Predicted class 

  APL Inv Mono Other 

APL 76.19% 2.71% 2.18% 18.92% 

Inv 7.79% 26.49% 33.66% 32.06% 

Mono 3.11% 17.81% 51.73% 27.35% 

True 
class 

Other 8.62% 5.56% 8.70% 77.12% 
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Table 2 Final clustering for the HC-Salamanca dataset 

Cluster Samples in cluster 

APL 
APL-05204, APL-10222, APL-12366, APL-13058, APL-13223, APL-14217, APL-
14398, APL-16089, APL-16739, APL-17074, Other-00139 

Mono 
Inv-00355, Inv-10891, Mono-06667, Mono-09949, Mono-12361, Mono-13701, Mo-
no-13774, Mono-13850, Mono-14043 

Other 

Inv-00185, Inv-07644, Other-00170, Other-06209, Other-07297, Other-09376, Other-
09875, Other-10232, Other-10557, Other-11567, Other-12570, Other-13296, Other-
13451, Other-14399, Other-14698, Other-14735, Other-15443, Other-15833, Other-
16221, Other-16942, Other-16973, Other-17099, Other-17273 

Assuming as “ground truth” the clustering given by authors in [7], the perform-
ance of the clustering process can be tested by comparing the results given in both 
tables. Some commonly used indices such as the Rand index and the Jaccard coef-
ficient have been defined to measure the degree of similarity between two parti-
tions. For the clustering given by our experiment, the Rand index was 0.90 and the 
Jaccard coefficient was 0.77. 

3.2   The Armstrong Dataset 

In [8] the authors proposed that lymphoblastic leukemias with MLL translocations 
(mixed-lineage leukemia) constitute a distinct disease, denoted as MLL, and show 
that the differences in gene expression are robust enough to classify leukemias 
correctly as MLL, acute lymphoblastic leukemia (ALL) or acute myeloid leuke-
mia (AML). The public dataset of this work, herein referred to as the Armstrong 
dataset, has been also used to test our proposal. The complete group of samples 
consists of 24 patients with B-Precursor ALL (ALL), 20 patients with MLL rear-
ranged B-precursor ALL (MLL) and 28 patients with acute myeloid leukemia 
(AML). All the samples were analyzed using the Affymetrix GeneChip U95a 
which contains 12600 known genes. 

Table 3 Confusion matrix for the Armstrong dataset 

  Predicted class 

  ALL AML MLL 

ALL 65.88% 5.16% 28.95% 

AML 4.42% 86.40% 9.18% 
True  
class 

MLL 34.74% 12.85% 52.41% 

The percentage of times (on average) in which microarrays of each reference 
cluster have been grouped together with microarrays of different classes (across 
the ten executions of the algorithm) is shown in Table 3. These percentages can be 
considered as an estimation of the overlapping area of the membership functions 
of any two potential groups in the sector associated to a true class.   
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Table 4 Final clustering for the Armstrong dataset 

Cluster Samples in cluster 

ALL 
ALL-01, ALL-02, ALL-04, ALL-05, ALL-06, ALL-07, ALL-08, ALL-09, ALL-10, 
ALL-11, ALL-12, ALL-13, ALL-14, ALL-15, ALL-16, ALL-17, ALL-18, ALL-19, 
ALL-20, ALL-58, ALL-59, ALL-60, MLL-25, MLL-32, MLL-34, MLL-62 

AML 

ALL-03, AML-38, AML-39, AML-40, AML-41, AML-42, AML-43, AML-44, 
AML-46, AML-47, AML-48, AML-49, AML-50, AML-51, AML-52, AML-53, 
AML-54, AML-55, AML-56, AML-57, AML-65, AML-66, AML-67, AML-68, 
AML-69, AML-70, AML-71, AML-72 

MLL 
ALL-61, AML-45, MLL-21, MLL-22, MLL-23, MLL-24, MLL-26, MLL-27, MLL-
28, MLL-29, MLL-30, MLL-31, MLL-33, MLL-35, MLL-36, MLL-37, MLL-63, 
MLL-64 

As in the HC-Salamanca dataset, if the highest percentage for each sample  
determines the cluster of the microarray, the final clustering obtained by our simu-
lated annealing-based algorithm is shown in Table 4. As in the previous experi-
ment, assuming the clustering given by authors in [8] is the “ground truth”, the 
Rand index and the Jaccard coefficient for experiments carried out are 0.89 and 
0.72, respectively. 

4   Discussion 

The aim of the experiments reported in the previous section is to test the validity 
of the proposed clustering method. Dealing with unsupervised classification, it is 
very difficult to test the ability of a method to perform the clustering since there is 
no supervision of the process. In this sense, the classification into different groups 
proposed by the authors in [7, 8] is assumed to be the reference partition of sam-
ples in our work. This assumption may be questionable in some cases, since the 
reference groups are not well established. For example, in the HC-Salamanca 
dataset the AML with inversion group is established by observation of the karyo-
type of cancer cells, but there is no other evidence (biological, genetic) suggesting 
that this group corresponds to a distinct disease. Even so, the assumption of these 
prior partitions as reference groups is the only way to evaluate the similarity (or 
dissimilarity) of the results computed by the proposed method based on existing 
knowledge. As it turns out, there is no perfect match among the results of our pro-
posed method and the reference partitions, but they are compatible with the cur-
rent knowledge of each dataset. For example, for the HC-Salamanca dataset the 
better characterized groups are the APL and Other-AML groups, the worst is the 
AML with inversion group, and there is some confusion of the monocytic AML 
with the AML with inversion and Other-AML groups. These results are compati-
ble with the state-of-the-art discussed in [7], where the APL group is the better 
characterized disease (it can be considered as a distinct class), the monocytic 
AML is a promising disease, the AML with inversion in chromosome 16 is the 
weaker class, and the Other-AML group acts as the dumping ground for the rest  
of samples which are not similar enough to the other possible classes. For the 
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Armstrong dataset, the AML group is clearly separated from the MLL and ALL 
groups. It is not surprising since the myeloid leukemia (AML) and lymphoblastic 
leukaemias (MLL and ALL) represent distinct diseases. Some confusion is present 
among ALL and MLL groups, but this result is compatible with the assumption 
(which the authors test in [8]) that the MLL group is a subtype of the ALL disease. 

5   Conclusion 

The simulated annealing-based algorithm presented in this work is a new  
algorithm for iterative class discovery that uses fuzzy logic for informative gene 
selection. An intrinsic advantage of the proposed method is that, assuming the 
percentage of times in which a given microarray has been grouped with samples 
of other potential classes, the degree of membership of that microarray to each po-
tential group can be deduced. This fact allows a fuzzy clustering of the available 
microarrays which is more suitable for the current state-of-the-art in gene expres-
sion analysis, since it will be very unlikely to state (without uncertainty) that any 
available microarray only belongs to a unique potential cluster. In this case, the 
proposed method can help to assess the degree of affinity of each microarray with  
potential groups and to guide the analyst in the discovery of new diseases. 

In addition, the proposed method is also an unsupervised technique for gene se-
lection when it is used in conjunction with the concept of discriminant fuzzy pat-
tern (DFP) introduced in [9]. Since the selected genes depend on the resulting 
clustering (they are the genes in the computed DFP obtained from all groups) and 
the clustering is obtained by maximizing the cost function (which is based on the 
notion of genetic coherence and assessed by the number of genes in the fuzzy pat-
tern of each cluster), then the selected genes jointly depend on all the genes in the 
microarray, and the proposed method can be also considered a multivariate 
method for gene selection. 

Finally, the proposed technique, in conjunction with our previous developed 
GENECBR platform [10], represents a more sophisticated tool which integrates 
three main tasks in expression analysis: clustering, gene selection and classifica-
tion. In this context, all the proposed methods are non-parametric (they do not de-
pend on assumptions about the underlying distribution of available data), unbiased 
with regard to the basic computational facility used to construct them (the notion 
of fuzzy pattern) and with the ability to manage imprecise (and hence, uncertain) 
information, which is implicit in available datasets in terms of degree of member-
ship to linguistic labels (expressions levels, potential categories, etc.). 
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Automatic Workflow during the Reuse Phase of 
a CBP System Applied to Microarray Analysis 

Juan F. De Paz, Ana B. Gil, and Emilio Corchado  

1 

Abstract. The application of information technology in the field of biomedicine 
has become increasingly important over the last several years. The different possi-
bilities for the workflow in the microarray analysis can be huge and it would be 
very interesting to create an automatic process for establishing the workflows. 
This paper presents an intelligent dynamic architecture based on intelligent or-
ganizations for knowledge data discovery in biomedical databases. The multi-
agent architecture incorporates agents that can perform automated planning and 
find optimal plans. The agents incorporate the CBP-BDI model for developing the 
automatic planning that makes possible to predict the efficiency of the workflow 
beforehand These agents propose a new reorganizational agent model in which 
complex processes are modelled as external services.  

Keywords: Multiagent Systems, microarray, Case-based planning. 

1   Introduction 

The continuous growth of techniques for obtaining cancerous samples, specifically 
those using microarray technologies, provides a great amount of data. Microarray 
has become an essential tool in genomic research, making it possible to investigate 
global genes in all aspects of human disease [4]. Expression arrays [5] contain in-
formation about certain genes in a patient’s samples. These data have a high di-
mensionality and require new powerful tools.  

This paper presents an innovative solution to model reorganization systems in 
biomedical environments. It is based on a multi-agent architecture that can inte-
grate Web services, and incorporates a novel planning mechanism that makes it 
possible to determine workflows based on existing plans and previous results. The 
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core of the system presented in this paper is a CBP-BDI (Case-based planning) 
(Belief Desire Intention) agent [3] specifically designed to act as Web services co-
ordinator, making it possible to reduce the computational load for the agents in the 
organization and expedite the classification process. CBP-BDI agents [2] make it 
possible to formalize systems by using a new planning mechanism that incorpo-
rates graph theory as a reasoning engine to generate plans. The system was  
specifically applied to case studies consisting of the classification of cancers from 
microarrays. The multi-agent system developed incorporates novel strategies for 
data analysis and microarray data classification.  

The next section describes the expression analysis problem. Section 2 presents 
a case study consisting of a distributed multi-agent system for cancer detection 
scenarios. Finally section 3 presents the results and conclusions obtained. 

2   Self-Adaptive Multiagent System for Expression Analysis 

Nowadays, it is essential to have software solutions that enforce autonomy, ro-
bustness, flexibility and adaptability of the system to develop. The dynamic agent 
organizations that auto-adjust themselves to obtain advantages from their envi-
ronment seem to be a technology that is more than suitable for coping with the de-
velopment of this type of system. The integration of multi-agent systems with 
SOA (Service Oriented Architecture) and Web Services approaches has been re-
cently explored [7]. Some developments are centered on communication between 
these models, while others are centered on the integration of distributed services, 
especially Web Services, into the structure of the agents. [8] Oliva et al. [8] have 
developed a java-based framework to create SOA and Web Services compliant 
applications, which are modelled as agents.  

The approach presented in this paper is an organizational model for biomedical 
environments based on a multi-agent dynamic architecture that incorporates 
agents capable of generating plans for analyzing large amounts of data. The core 
of the system is a novel mechanism for the implementation of the stages of  
CBP-BDI mechanisms through Web services that provides a dynamic self-
adaptive behaviour to reorganize the environment. The types of agents are distrib-
uted in layers within the system according to their functionalities. The agent layers 
constitute the core and define a virtual organization for massive data analysis: 

• Organization: The agents will be responsible for conducting the analysis 
of information following the CBP-BDI [2] reasoning model. The agents 
from the organizational layer should be initially configured for the differ-
ent types of analysis that will be performed, given that these analyses 
vary according to the available information and the search results. 

• Analysis: The agents in the analysis layer are responsible for selecting the 
configuration and the flow of services best suited for the problem at 
hand. They communicate with Web services to generate results. The 
agents of this layer follow the CBP-BDI [2] reasoning model. The work-
flow and configuration of the services to be used is selected with   
graphs, using information that corresponds to the previously executed 
plans.  
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• The Controller agent manages the agents available in the different layers 
of the multiagent system. It allows the registration of agents in the layers, 
as well as their use in the organization.  

• Analysis Services: The analysis services are services used by analysis 
agents for carrying out different tasks. The analysis services include ser-
vices for pre-processing, filtering, clustering and extraction of knowledge.  

2.1   Coordinator CBP-BDI Agent 

The agents in the analysis  layer have the capacity to learn from the analysis car-
ried out in previous procedures. They adopt the CBP reasoning model, a speciali-
zation of case-based reasoning (CBR) [1]. CBR systems solve new problems by 
adapting solutions that have been used to solve similar problems in the past, and 
learning from each new experience. A CBR manages cases (past experiences) to 
solve new problems. The way cases are managed is known as the CBR cycle, and 
consists of four sequential phases: retrieve, reuse, revise and retain. CBP is the 
idea of planning as remembering [2]. In CBP, the solution proposed to solve a 
given problem is a plan, so this solution is generated by taking into account the 
plans applied to solve similar problems in the past [6]. The CBP-BDI agents stem 
from the BDI model [9] and establish a correspondence between the elements 
from the BDI model and the CBP systems. Fusing the CBP agents together with 
the BDI model and generating CBP-BDI agents makes it possible to formalize the 
available information, the definition of the goals and actions that are available for 
resolving the problem, and the procedure for resolving new problems by adopting 
the CBP reasoning cycle. Agent plan is the name we give to a sequence of actions 
that, from a current state e0, defines the path of states through which the agent 
passes in order to reach the other world state.  

))(()()( 0110 eaaeaeep nnnnn ==== −  1aap nn ≡  (1) 

Based on this representation, the CBP-BDI coordinator agents combine the initial 
state of a case, the final state of a case with the goals of the agent, and the inten-
tions with the actions that can be carried out in order to create plans that make it 
possible to reach the final state. The actions that need to be carried out are ser-
vices, making a plan an ordered sequence of services. It is necessary to facilitate 
the inclusion of new services and the discovery of new plans based on existing 
plans. Services correspond to the actions that can be carried out and that determine 
the changes in the initial problem data. The plan actions correspond to services 
and the order in which the actions are applied correspond to the order for execut-
ing services. As such, an organizational plan is defined by the services that  
comprise it and by the order of applying each of those services. 

The information corresponding to each plan is represented in bidimensional ar-
rays as shown in the chart in figure 1. The chart lists the plans in rows while the 
colums represent the links between the services that comprise a plan so that Sij 

represents the execution of service j occurring after service call i. The second row 
shows the plan comprised of services a2, a1, with an initial connection S02 that exe-
cutes service a2 at the initial stage. The columns for service S2x provide the  
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connection with the subsequent service, i.e., S21, for which service a1 is executed. 
Lastly, column S1x executes action S1f. 

S01 S02 S21 S23 S2f......S12 S13 S1f...... Si1 Sij Sif......
v ......v...... ......

v v ......v...... ......
v v......v ...... ......

a1

a2a1

a1a2

Actions/Services

Pl
an

s v1

v2

v3

Efficiency

 

Fig. 1 Plans and plan actions carried out through a concatenation of services 

Based on the information corresponding to previous experiences (plans already 
executed) a new plan is generated. To do so, the cases with the greatest and least 
efficiency with regards to the current problem are retrieved, and the CBP reason-
ing cycle is initiated according to the BDI specifications. This way, each plan is 
represented by the following expression: 

{ }))(())(( 0000 eSSeaaaap ikfikf ⋅⋅⋅=⋅⋅⋅=  (2) 

where e0 represents the initial state that corresponds to the initial value of each 
probe. As each of the selected services are executed, different states ei, are 
reached, which contain the new set of probes produced by the application of  
services. 

2.1.1   Retrieve 
During the retrieval stage, the plans with the greatest and least efficiency are se-
lected from among those that have been applied. Microarrays are composed of 
probes that represent variables that mark the level of significance of specific 
genes. The retrieval of those cases is performed in one of two ways according to 
the case study. To retrieve cases, it is important to consider whether there has  
been a previous analysis of a case study with similar characteristics. If so, the  
corresponding plans for the same case study are selected. 

If there are no plans that correspond to the same case study, or if the number of 
plans is insufficient, the plans corresponding ot the most similar case study are re-
trieved. The selection of the most similar case study is performed according to the 
cosine distance applied to the following set of variables: Number of probes,  
Number of cases, Coefficient of the Pearson variation [12] for e0. 

The number of efficient and inefficient cases selected is predetermined so that 
at the end of this stage the following set of elements is obtained: 
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Pe represents the set of efficient plans and Pi represents the set of inefficient plans. 
Once the plans have been retrieved, a new efficient plan is generated in the next 
phase. 
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2.1.2   Reuse 
This phase takes the plans P obtained in the retrieval phase and generates a new, 
more efficient plan. The new plan is built according to the efficiency of the actions 
as estimated by the overall efficiency vi of the plan. Estimating the efficiency of 
each action is done according to the model defined by the decision trees for select-
ing significant nodes [3]. This way, estimating the efficiency of each action is  
carried out according to the expression (3). This expression is referred to as the 
winning rate and depends on both node S and the selected attribute B. 

∑
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where S represents a node that, in this case, will always be the root node of the 

tree, B is the condition for the existing action, iS  represents child node i from 

node S, iS  the number of cases associated with the child node iS . The function 

)(SI  represents gain and is defined as follows 
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where S
jf  represents the frequency relative to class 

jC  in S , 
S

S
jS
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S
jn  the 

number of elements from class 
jC  in S  and SN  the total number of elements. In 

this case, Cj={efficient, inefficient}. 
The gain ratio G determines the level of importance for each action by distin-

guishing between an efficient and an inefficient plan. High values for the gain ra-
tio indicate that the action should be included in a plan if it involves an action to 
be carried out in an efficient plan, otherwise it should be eliminated. 

A new table listing gain data is formed according to the values of the gain ratio 
and the efficiency associated with each plan. A new flow of execution for each  
action is created from the gains table. The gains uses the following formula to  
establish a value for the significance of each of the actions carried out in each 
plan: 

kijij vSSGkST ⋅= ),('),(  (6) 

where G´ contains the values of G that are normalized between 0 and 1 with the 
values being inverted (the maximum value corresponds to 0 and the minimum to 
1) and v contains the average value of efficiency for the plans with a connection 
ij. Each connection ij presents an influence in the final efficiency of the plan that 

is represented as ijkt .  

Once the graph for the plans has been constructed, the minimal route that goes 
from the start node to the end node is calculated. In order to calculate the  
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shortest/longest route, the Dijkstra algorithm is applied since there are implemen-
tations for the order n*log n. To apply this algorithm, it is necessary to add to each 
of the edges the absolute value of the edge with a higher negative absolute value, 
in order to remove from the graph those edges with negative values.  

2.1.3   Revise and Retain 
The revise phase is carried out automatically according to the final efficiency ob-
tained. The different analyses are associated with different measures of efficiency 
that measure the final quality of the results obtained, making it unnecessary to per-
form a manual revision. During the retain phase, the plan is stored in the memory 
of plans. If a plan with the same flow of execution of services for the same case 
study already exists, only the information from the plan with the highest quality 
will be stored. This makes it possible to limit the size of the case memory and  
select only those plans with certain parameters such as level of significance,  
correlation coefficient, percentile, etc. 

3   Results and Conclusions 

This paper has presented a self-adaptive organization based on a multiagent archi-
tecture and its application to a real problem. In 2006, there were approximately 
64,122 men and women alive in the United States who had a history of cancer of 
the stomach: 36,725 men and 27,397 women. The age-adjusted incidence rate was 
7.9 per 100,000 men and women per year while the fatality rate was 4.0 per 
100,000 [11]. The data for gastric cancer were obtained with a HG U133 plus 2.0 
chip and corresponded to 234 patients affected by this cancer in 3 different parts 
of the organism (primary gastric cancer, skin and others) [10]. The data were  
obtained from a public repository at http://www.ebi.ac.uk. 

The experiment consisted of evaluating the services distribution system in the 
filtering agent for the case study that classified patients affected by different types 
of cancer. According to the identification of the problem described in table 1, the 
filtering agent selected the plans with the greatest efficiency, considering the  
different execution workflows for the services that are in the plans.  

The filtering agent in the analysis layer selects the configuration parameters be-
tween a specific set of pre-determined values, when it has been told to explore the 
parameters. Otherwise, for a specific plan, it selects the values that have provided 
better results based on the measure of the previously established efficiency. The 
different configurations used are listed in table 1. A depth analysis of these tech-
niques can be found in our previous work [10]. The last columns of the table list 
the final efficiency obtained based a measure and the type of plan (efficient or in-
efficient). A value of 1 in the Class column indicates that the plan is efficient 
while a 0 indicates that the plan is inefficient. The remaining value indicates the 
order of execution of the services. 



Automatic Workflow during the Reuse Phase of a CBP System  23
 

Table 1 Efficiency of the plans 

Plan Variability (z)  Uniform (α) Correlation (α) Cutoff  Efficiency Class 
p1 1  2  3   0.14641098 1 
p2 1  2  3 4 1 0 
p3 1   2  0.24248635 1 
p4  1 2  0.14935538 1 
p5 3 1 2  0.15907924 1 
p6 1    0.96457118 0 
p7    1 1 0 
p8   1 2 1 0 

 
The diagnostic agent at the Organization level is in charge of selecting which 

filtering agent to use. The filtering agent, in turn, automatically and in accordance 
with the efficiency of each of the plans listed in table 1 and the equation (5), se-
lects the flow of services that best adapts to the case study. In accordance with the 
equation defined in (5) and the information regarding efficiency provided by table 
1, the relevance for the execution of each of the services is calculated.  
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Fig. 2 Decision tree for classifying patients 

Figure 2 displays the directed graph that was obtained. The final path that is 
followed is shown in bold. The new estimated plan is comprised of the sequence 
of actions S02, S21, S13, S3f. 

It is clear that the path followed in the plan that was obtained does not coincide 
with any path previously applied, although the services that it contains presents an 
efficiency similar to that given by plan p1 as shown in table 1. The efficiency ob-
tained in this execution is 0.14458. 

The system presented in this study provides a novel mechanism for a global co-
ordination in highly changing environments. The mechanism is capable of auto-
matic reorganization and is especially useful for decision making in systems that 
use agreement technologies. The system was applied to a case study in a biomedi-
cal environment and can be easily extended to other environments with similar 
characteristics.  
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A Comparative Study of Microarray Data 
Classification Methods Based on Ensemble 
Biological Relevant Gene Sets 

Miguel Reboiro-Jato, Daniel Glez-Peña, Juan Francisco Gálvez,  
Rosalía Laza Fidalgo, Fernando Díaz, and Florentino Fdez-Riverola 

1 

Abstract. In this work we study the utilization of several ensemble alternatives for 
the task of classifying microarray data by using prior knowledge known to be bio-
logically relevant to the target disease. The purpose of the work is to obtain an 
accurate ensemble classification model able to outperform baseline classifiers by 
introducing diversity in the form of different gene sets. The proposed model takes 
advantage of WhichGenes, a powerful gene set building tool that allows the auto-
matic extraction of lists of genes from multiple sparse data sources. Preliminary 
results using different datasets and several gene sets show that the proposal is able 
to outperform basic classifiers by using existing prior knowledge. 

Keywords: microarray data classification, ensemble classifiers, gene sets, prior 
knowledge. 

1   Introduction and Motivation 

The advent of microarray technology has become a fundamental tool in genomic 
research, making it possible to investigate global gene expression in all aspects of 
human disease. In particular, cancer genetics based on the analysis of cancer geno-
types, provides a valuable alternative to cancer diagnosis in both theory and prac-
tice [1]. In this context, the automatic classification of cancer patients has been a 

                                                           
1 Miguel Reboiro-Jato . Daniel Glez-Peña . Juan Francisco Gálvez . Rosalía Laza Fidalgo . 
Florentino Fdez-Riverola 
ESEI: Escuela Superior de Ingeniería Informática, University of Vigo,  
Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain 
e-mail: {mrjato, dgpena, galvez, rlaza, riverola}@uvigo.es 

Fernando Díaz 
EUI: Escuela Universitaria de Informática, University of Valladolid, Plaza Santa Eulalia, 
9-11, 40005, Segovia, Spain 
e-mail: fdiaz@infor.uva.es 



26 M. Reboiro-Jato et al.
 

promising approach in cancer diagnosis since the early detection and treatment 
can substantially improve the survival rates. For this task, several computational 
methods (statistical and machine learning) have been proposed in the literature 
including linear discriminant analysis (LDA), Naïve-Bayes classifier (NBC), 
learning vector quantization (LVQ), radial basis function (RBF) networks, deci-
sion trees, probabilistic neural networks (PNNs) and support vector machines 
(SVMs) among others [2]. In the same line, but following the assumption that a 
classifier ensemble system is more robust than an excellent single classifier [3], 
some researchers have also successfully applied different classifier ensemble sys-
tems to deal with the classification of microarray datasets [4]. 

In addition to predictive performance, there is also hope that microarray studies 
uncover molecular disease mechanisms. However, in many cases the molecular 
signatures discovered by the algorithms are unfocused form a biological point of 
view [5]. In fact, they often look more like random gene lists than biologically 
plausible and understandable signatures. Another shortcoming of standard classi-
fication algorithms is that they treat gene-expression levels as anonymous attrib-
utes. However, a lot is known about the function and the role of many genes in 
certain biological processes. 

Although numerical analysis of microarray data is considerable consolidated, 
the true integration of numerical analysis and biological knowledge is still a long 
way off [6]. The inclusion of additional knowledge sources in the classification 
process can prevent the discovery of the obvious, complement a data-inferred hy-
pothesis with references to already proposed relations, help analysis to avoid over-
confident predictions and allow us to systematically relate the analysis findings to 
present knowledge [7]. In this work we would like to incorporate relevant gene 
sets obtained from WhichGenes [8] in order to make predictions easy to interpret 
in concert with incorporated knowledge. The study carried out aims to borrow 
information from existing biological knowledge to improve both predictive  
accuracy and interpretability of the resulting classifiers. 

The rest of the paper is structured as follows: Section 2 presents a brief review 
about the use of ensemble methods for classifying microarray data. Section 3 de-
scribes the selected datasets and base classifiers for the current study, together 
with the choice of gene sets and the different approaches used for ensemble  
creation. Finally Section 4 discusses the reported results and concludes the paper. 

2   Related Work 

Although much research has been performed on applying machine learning tech-
niques for microarray data classification during the past years, it has been shown 
that conventional machine learning techniques have intrinsic drawbacks in achiev-
ing accurate and robust classifications. In order to obtain more robust microarray 
data classification techniques, several authors have investigated the benefits of this 
approach applied to genomic research. 

Díaz-Uriarte and Alvarez de Andrés [9] investigated the use of random forest 
for multi-class classification of microarray data and proposed a new method of 
gene selection in classification problems based on random forest. Using simulated 
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and real microarray datasets the authors showed that random forest can obtain 
comparable performance to other methods, including DLDA, KNN, and SVM. 

Peng [10] presented a novel ensemble approach based on seeking an optimal 
and robust combination of multiple classifiers. The proposed algorithm begins 
with the generation of a pool of candidate base classifiers based on the gene sub-
sampling and then, it performs the selection of a sub-set of appropriate base classi-
fiers to construct the classification committee based on classifier clustering.  
Experimental results demonstrated that the proposed approach outperforms both 
baseline classifiers and those generated by bagging and boosting. 

Liu and Huang [11] applied Rotation Forest to microarray data classification 
using principal component analysis, non-parametric discriminant analysis and 
random projections to perform feature transformation in the original rotation  
forest. In all the experiments, the authors reported that the proposed approach  
outperformed bagging and boosting alternatives. 

More recently, Liu and Xu [12] proposed a genetic programming approach to 
analyze multiclass microarray datasets where each individual consists of a set of 
small-scale ensembles containing several trees. In order to guarantee high diver-
sity in the individuals a greedy algorithm is applied. Their proposal was tested 
using five datasets showing that the proposed method effectively implements the 
feature selection and classification tasks. 

As a particular case in the use of ensemble systems, ensemble feature selection 
represents an efficient method proposed in [13] which can also achieve high clas-
sification accuracy by combining base classifiers built with different feature sub-
sets. In this context, the works of [14] and [15] study the use of different genetic 
algorithms alternatives for performing feature selection with the aim of making 
classifiers of the ensemble disagree on difficult cases. Reported results on both 
cases showed improvements when compared against other alternatives. 

Related with previous work, the aim of this study is to validate the superiority 
of different classifier ensemble approaches when using prior knowledge in the 
form of biological relevant gene sets. The objective is to improve the predictive 
performance of baseline classifiers. 

3   Comparative Study 

In order to carry out the comparative study, we apply several ensemble alternatives 
to classify three DNA microarray datasets involving various tumour tissue samples. 
With the goal of validate the study, we analyze the performance of different base-
line classifiers and test our hypothesis using two different sources of information. 

3.1   Datasets and Base Classifiers 

We carry out the experimentation using three public leukemia datasets taken from 
the previous studies of Gutiérrez et al [16], Bullinger et al [17] and Valk et al 
[18]. We have selected samples from each dataset belonging to 4 different groups 
of acute myeloid leukemias including (i) promyelocytic (APL), (ii) inversion 16, 
(iii) monocytic and (iv) other AMLs. The distribution of samples is showed in 
Table 1. 
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Table 1 Distribution of microarray data samples belonging to the public datasets analyzed 

 APL Inv(16) Monocytic Other 
Gutiérrez et al 10 4 7 22 
Bullinger et al 19 14 64 177 
Valk et al 7 10 7 51 

In order to compare the performance obtained by the different ensemble ap-
proaches, we have selected four well-known classification algorithms: (i) Naïve 
Bayes (NB) learner is perhaps the most widely used method. Although its inde-
pendence assumption is over-simplistic, studies have found NB to be very effec-
tive in a wide range of problems; (ii) IB3 represents a variant of the well-known 
nearest neighbour algorithms implementing a simple version of a lazy learner 
classifier; (iii) Support Vector Machines (SVMs) constitute a famous family of 
algorithms used for classification and regression purposes. Their mayor advantage 
is that their learning capacity does not degrade even if many characteristics exist, 
being especially applicable to microarray data; (iv) Random Forest (RFs) is a basic 
ensemble classifier that consists of many decision trees. The method combines 
bagging idea and random selection of features in order to construct a collection of 
decision trees with controlled variation. 

3.2   Biological Knowledge Gene Sets 

For the prior selection of gene sets that represent explicit information available the fol-
lowing sources of information have been used: (i) 33 metabolic sub-pathways related to 
existing cancers in SABiosciences (http://www.sabiosciences.com) previously analyzed 
in studies by [19] and [20] plus 4 groups extracted from the OMIM  (Online Mendelian 
Inheritance in Man) database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim) that 
correspond to various types of leukemia (myeloid, monocytoid, promyelocytic and 
general leukemia) and (ii) those pathways from KEGG (Kyoto Encyclopedia of Genes 
and Genomes) database grouped in both ‘environmental information processing’ and 
‘genetic information processing’ categories. 

3.3   Ensemble Alternatives 

According to Kuncheva [3], several ensembles can be built by introducing varia-
tions at four different levels: (i) data level, (ii) feature level, (iii) classifier level 
and (iv) combination level.  

First of all, by using different data subsets at data level or different feature sub-
sets at feature level, the space of the problem can be divided into several areas 
where base classifiers can be trained. This divide-and-conquer strategy can sim-
plify the problem, leading to improved performance of the base classifiers.  
Secondly, at classifier level, different types of classifiers can be used in order to 
take advantage of the strong points of each classifier type. Although many ensem-
ble paradigms employ the same classification model, there is no evidence that one 
strategy is better than the other [3]. Finally, combination level groups the different 
ways of combining the classifier decisions. 
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In this study, base classifiers are trained with all the samples in each data set, so 

no work is performed at data level. The feature level is carried out by incorporat-
ing gene set data to the ensemble models. Each pathway or group of genes is used 
as a feature selection, so microarray data will be filtered to keep only the expres-
sion level of those genes belonging to some group before training base classifiers. 

In order to construct the final ensemble, our approach consists on two sequen-
tial steps: (i) classifier selection, in which each simple classifier is initially trained 
with each gene set following a stratified 10-fold cross-validation process for esti-
mating its performance and (ii) classifier training, where the selected pairs of 
simple_classifier/gene_set are trained with the whole data set. All the different 
strategies proposed in this study for the selection of promising classifiers are based 
on the value of the kappa statistic obtained for each simple_classifier/gene_set 
pair in the first step. The proposed heuristics are the following: 

• All classifiers [AC]: every simple_classifier/gene_set pair is used for 
constructing the final ensemble. 

• All gene sets [AG]: for each gene set, the simple_classifier/gene_set pair 
with best kappa value is selected for constructing the final ensemble. 

• Best classifiers without type [BCw/oT_%]: a global threshold is calcu-
lated as a percentage of the best kappa value obtained by the winner sim-
ple_classifier/gene_set pair. Those pairs with a kappa value equal or 
higher than the computed threshold are selected.  

• Best classifier by type [BCbyT_%]: as in the previous heuristic a given 
threshold is calculated, but in this case there is a threshold for each  
simple classifier type. 

The form in which the final output of the ensemble is calculated is also based on 
the kappa statistic. The combination approach used on for the proposed ensembles 
is a weighted majority vote where the weight of each vote is the corresponding 
classifier’s kappa value. 

4   Experimental Results and Discussion 

In order to evaluate the heuristics defined in the previous section, a comparative study 
was carried out using two different sources of information (OMIM and KEGG) in 
order to classify 392 samples belonging to four classes coming from three real data 
sets. In addition, the four simple base classifiers used for the ensemble generation 
(IB3, NBS, RF, SVM) where also tested individually, using as feature selection both 
those genes included in the OMIM gene sets plus those genes being part of the 
KEGG gene sets. Classification tests were performed using a stratified 10-fold cross-
validation. Tables 2 and 3 summarize the results obtained from the experimentation 
carried out showing only those classifiers with better performance. 

Table 2 presents the accuracy and kappa values achieved by each classifier us-
ing KEGG gene sets as prior knowledge. As it can be observed, BCbyT heuristic 
generally exhibits good performance regardless of the data set. Additionally, 
BCw/oT heuristic also showed good performance, although in the Gutiérrez data 
set two single classifiers (IB3 and NBS) performed better than ensembles using 
this strategy.  
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Table 2 Classification result using KEGG gene sets 

Gutiérrez Bullinger Valk 
Classifier 

Accuracy Kappa Accuracy Kappa Accuracy Kappa 

AC 76,74% 0,588 76,00% 0,292 76,28% 0,503 

AG 79,07% 0,634 76,00% 0,299 75,18% 0,533 

BCbyT_90% 81,40% 0,724 82,67% 0,373 77,01% 0,540 

BCbyT_95% 83,72% 0,724 82,67% 0,329 78,83% 0,574 

BCw/oT_60% 79,07% 0,635 80,00% 0,476 77,37% 0,556 

BCw/oT_75% 79,07% 0,635 81,33% 0,367 76,64% 0,555 

BCw/oT_85% 76,74% 0,612 80,00% 0,403 75,55% 0,546 

IB3 83,72% 0,756 69,33% 0,369 67,52% 0,410 

NBS 81,40% 0,679 73,33% 0,269 74,09% 0,530 

RF 72,09% 0,533 68,00% 0,123 69,71% 0,337 

SVM 51,16% 0,000 68,00% 0,000 64,60% 0,000 

Table 3 Classification result using OMIM gene sets 

Gutiérrez Bullinger Valk Classifier 
Accuracy Kappa Accuracy Kappa Accuracy Kappa 

AC 76,74% 0,588 76,00% 0,343 74,82% 0,439 
AG 76,74% 0,588 76,00% 0,343 76,28% 0,506 
BCbyT_90% 81,40% 0,680 82,67% 0,569 75,91% 0,528 
BCbyT_95% 86,05% 0,774 82,67% 0,569 75,91% 0,513 
BCw/oT_60% 81,40% 0,680 80,00% 0,483 75,91% 0,521 
BCw/oT_75% 88,37% 0,809 81,33% 0,526 75,91% 0,530 
BCw/oT_85% 79,07% 0,672 80,00% 0,482 76,28% 0,555 
IB3 76,74% 0,643 73,33% 0,451 67,52% 0,391 
NBS 79,07% 0,634 76,00% 0,370 72,99% 0,510 
RF 79,07% 0,658 74,67% 0,372 74,09% 0,420 
SVM 51,16% 0,000 68,00% 0,000 77,74% 0,539 

Table 3 presents the same experimentation but using the OMIM gene sets. 
Once again, BCbyT heuristic achieved good performance. Comparing its behav-
iour against single classifiers, performance of ensembles is even better than in the 
previous experimentation (using KEGG gene sets). BCw/oT heuristic also per-
forms better with the OMIM gene set, being slightly superior to BCbyT heuristic. 
Ensembles using this strategy not only performed better than single classifiers, but 
also achieved the best kappa value in two of the three analyzed data sets. 

To sum up, we can conclude that BCbyT heuristic performed as the best base 
classifier selection strategy, followed closely by BCw/oT heuristic. This fact backs 
up the following ideas: (i) depending on the data set there is not a single classifier 
able to achieve good performance in concert with the supplied knowledge and  
(ii) the presence of each classifier type in the final ensemble may improve the 
classification performance. 

Regardless of the data set both BCw/oT and BCbyT heuristics behave  
uniformly performing better than single baseline classifiers. This circumstance 
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confirms the fact that ensembles generally perform better than single classifiers, in 
this case, by taking advantage of using prior structured knowledge. 
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Predicting the Start of Protein
α-Helices Using Machine Learning
Algorithms

Rui Camacho, Rita Ferreira, Natacha Rosa, Vânia Guimarães,
Nuno A. Fonseca, Vı́tor Santos Costa, Miguel de Sousa,
and Alexandre Magalhães

1 Introduction

Proteins are complex structures synthesised by living organisms. They are
actually a fundamental type of molecules and can perform a large number of
functions in cell biology. Proteins can assume catalytic roles and accelerate or
inhibit chemical reactions in our body. They can assume roles of transporta-
tion of smaller molecules, storage, movement, mechanical support, immunity
and control of cell growth and differentiation [25]. All of these functions rely
on the 3D-structure of the protein. The process of going from a linear se-
quence of amino acids, that together compose a protein, to the protein’s 3D
shape is named protein folding. Anfinsen’s work [29] has proven that primary
structure determines the way protein folds. Protein folding is so important
that whenever it does not occur correctly it may produce diseases such as
Alzheimer’s, Bovine Spongiform Encephalopathy (BSE), usually known as
mad cows disease, Creutzfeldt-Jakob (CJD) disease, a Amyotrophic Lateral
Sclerosis (ALS), Huntingtons syndrome, Parkinson disease, and other diseases
related to cancer.

A major challenge in Molecular Biology is to unveil the process of protein
folding. Several projects have been set up with that purpose. Although protein
function is ultimately determined by their 3D structure there have been identi-
fied a set of other intermediate structures that can help in the formation of the

Rui Camacho · Rita Ferreira · Natacha Rosa · Vânia Guimarães
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3D structure. We refer the reader to Section 2 for a more detailed description
of protein structure. To understand the high complexity of protein folding it
is usual to follow a sequence of steps. One starts by identifying the sequence of
amino acids (or residues) that compose the protein, the so-called primary struc-
ture; then we identify the secondary structures made of α-helices and β-sheet;
and then we predict the tertiary structure or 3D shape.

In this paper we address the step of predicting α-helices (parts of the
secondary structure) based on the sequence of amino acids that compose a
protein. More specifically, in this study we have built models to predict the
start of α-helices. We have applied Machine Learning to construct such mod-
els. We have collected the sequences of 1499 proteins from the PDB and have
assembled data sets that were further used by Machine Learning algorithms
to construct the models. We have applied rule induction algorithms, deci-
sion trees, functional trees, Bayesian methods, and ensemble methods. We
have achieved a 84.4% accuracy and were able to construct some small and
intelligible models.

The rest of the paper is organised as follows. Section 2 gives basic defini-
tions on proteins required to understand the reported work. Related work is
reported in Section 3. Our experiments, together with the results obtained,
are presented in Section 4. Conclusions are presented in Section 5.

2 Proteins

Proteins are build up of amino acids, connect by peptide bonds between
the carboxyl and amino groups of adjacent amino acid residues as shown in
Figure 1b) [24]. All amino acids have common structural characteristics that
include an α carbon to which are connected an amino group and a carboxyl
group, an hydrogen and a variable side chain as shown in Figure 1 a). It is
the side chain that determines the identity a specific amino acid. There are
20 different amino acids that integrate proteins in cells. Once the amino acids
are connected in the protein chain they are designated as residues.

Fig. 1 a) General Structure of an amino acid; side chain is represented by the
letter R. b) A fraction of a proteic chain, showing the peptide bounds

In order to function in an organism a protein has to assume a certain 3D
conformation. To achieve those conformations apart from the peptide bonds
there have to be extra types of weaker bonds between side chains. These extra
bonds are responsible for the secondary and tertiary structure of a protein [28].



Predicting the Start of Protein α-Helices 35

Fig. 2 Secondary structure con-
formations of a protein: α-helices
(left); β-sheet (right)

One can identify four types of struc-
tures in a protein. The primary structure
of a protein corresponds to the linear se-
quence of residues. The secondary struc-
ture is composed by subsets of residues ar-
ranged as α-helices and β-sheets, as seen
in Figure 2. The tertiary structure results
for the folding of α-helices or β-sheets.
The quaternary structure results from the
interaction of two or more polypeptide
chains.

Secondary structures, α-helices and β-sheets, were discovered in 1951 by
Linus Carl Pauling. These secondary structures are obtained due to the flexi-
bility of the peptide chain that can rotate over three different chemical bonds.
Most of the existing proteins have approximately 70% of their structure as
helices that is the most common type of secondary structure.

3 Related Work

Arguably, protein structure prediction is a fundamental problem in Bioin-
formatics. Early work by Chou et al. [26], based on single residue statistics,
looked for contiguous regions of residues that have an high probability of
belonging to a secondary structure. The protein samples used was very small
which resulted in an overestimation in accuracy of the reported study.

Qian et al [23] used neural networks to predict secondary structures but
achieved an accuracy of only 64.3%. They used a window (of size 13) tech-
nique where the secondary structure of the central residues was predicted on
the base of its 12 neighbours.

Rost and Sanderwith used the PHD [3] method on the RS126 data set and
achieved an accuracy of 73.5%. JPRED [14], exploiting multiple sequence align-
ments, got an accuracy of 72.9%. NNSSP [1] is a scored nearest neighbour
method by considering position of N and C terminal in α-helices and β-strands.
Its prediction accuracy for RS126 data set achieved 72.7%. PREDATOR [7]
used propensity values for seven secondary structures and local sequence align-
ment. The prediction accuracy of this method for RS126 data set achieved
70.3%. PSIPRED [8] used a position-specific scoring matrix generated by PSI-
BLAST to predict protein secondary structure and achieved 78.3. DSC [18]
used amino acid profile, conservation weights, indels, hydrophobicity were
exploited to achieve 71.1% prediction accuracy in the RS126 data set.

Using a Inductive Logic Programming (ILP) another series of studies
improved the secondary structure prediction score. In 1990 Muggleton et
al. [21] used only 16 proteins (in contrast with 1499 used in our study)
and the GOLEM [22] ILP system to predict if a given residue in a given
position belongs or not to an α-helix. They achieved an accuracy of 81%.
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Previous results have been reported by [9] using Neural Networks but achiev-
ing only 75% accuracy. The propositional learner PROMIS[17, 30] achieved
73% accuracy on the GOLEM’s data set.

It has been shown that the helical occurrence of the 20 type of residues is
highly dependent on the location, with a clear distinction between N-terminal,
C-terminal and interior positions [16]. The computation of amino acid propen-
sities may be a valuable information both for pre-processing the data and for
assessing the quality of the constructed models [10]. According to Blader et
al. [4] an important influencing factor in the propensity to form α-helices
is the hydrophobicity of the side-chain. Hydrophobic surfaces turn into the
inside of the chain giving a strong contribution to the formation of α-helices.
It is also known that the protein surrounding environment has influence in
the formation of α-helices. Modelling the influence of the environment in
the formation of α-helices, although important, is very complex from a data
analysis point of view [19].

4 Experiments

4.1 Experimental Settings

To construct models to predict the start of α-helices we have proceeded as
follows. We first downloaded a list of low homology proteins from the Dunbrak
web site [12]1. The downloaded list contained 1499 low homology proteins. We
then downloaded the PDBs2 for each of the protein in the list. Each PDB
was then processed in order to extract secondary structure information and
the linear sequence of residues of the protein.

Each example of a data set is a sequence of a fixed number of residues
(window) before and after the start or end of a secondary structure. The
window size is fixed for each data set and we have produced 4 data sets using
4 different window sizes. To obtain the example sequences to use we selected
sequences such that they are:

1. at the start of a α-helix;
2. at the end of a α-helix;
3. in the interior of a α-helix;
4. at the start of a β-strand;
5. at the end of a β-strand;
6. in the interior of a β-helix.

To do so, we identify the “special” point where the secondary structures start
or end, and then add W residues before and after that point. Therefore the
sequences are of size 2 ×W + 1, where W ∈ [2, 3, 4, 5]. In the interior of a
secondary structure we just pick sequences of 2×W + 1 residues that do not
overlap. With these sequences we envisage to study the start, interior and
1 http://dunbrack.fccc.edu/Guoli/PISCES.php
2 http://www.rcsb.org/pdb/home/home.do
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end of secondary structures. In this paper, however, we just address the first
step of the study, namely, we focus on the start of α-helices.

The size of the data sets, for the different window sizes, are shown in
Table 1.

Table 1 Characterisation of the four data sets according to the window size

Window size 2 3 4 5

Data set size 62053 49243 40529 34337

Number of attributes 253 417 581 745

The attributes used to characterise the examples are of two main types:
whole structure attributes; and, window-based attributes. The whole struc-
ture attributes include: the size of the structure; the percentage of hydropho-
bic residues in the structure; the percentage of polar residues in the structure;
the average value of the hydrophobic degree; the average value of the hy-
drophilic degree; the average volume of the residues; the average area of the
residues in the structure; the average mass of the residues in the structure;
the average isoelectric point of the residues; and, the average topological po-
lar surface area. For the window-based attributes we have used a window of
size W before the “special” point (start or end of either a helix or strand), the
“special” point and a window of size W after the “special” point. For each of
these regions, whenever appropriate, we have computed a set of properties
based on the set of individual properties of residues listed in Table 2.

Table 2 List of amino acid properties used in the study

polarity hydrophobicity size isoelectricpt

charge h-bonddonor xlogp3 side chain polarity

acidity rotatable bond count h-bondacceptor side chain charge

For each amino acid of the window and amino acid property we compute
other attributes, namely: the value of the property of each residue in the
window; either if the property “increases” or decreases the value along the
window; the number of residues in the window with a specified value and;
whether a residue at each position of the window belongs to a pre-computed
set of values. Altogether there are between 253 (window size of 2) to 745
(window size of 5) attributes. We have used boolean values: a sequence in-
cludes the start of an helix; the sequence does not contain a start of an helix.
All collected sequences where an helix does not start were included in the
“nonStartHelix” class. These later sequences include interior of α-helices, end
points of α-helices, start, interior and end points of beta strands.

The experiments were done in a machine with 2 quad-core Xeon 2.4GHz
and 32 GB of RAM, running Ubuntu 8.10. We used machine learning
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algorithms from the Weka 3.6.0 toolkit [31]. We used a 10-fold cross valida-
tion procedure to estimate the quality of constructed models. We have used
rule induction algorithms (Ridor), decision trees (J48 [27] and ADTree [11]),
functional trees (FT [13][20]), instance-based learning (IBk [2]), bayesian al-
gorithms (NaiveBayes and BayesNet [15]) and an ensemble method (Random-
Forest [5]).

4.2 Experimental Results

The results obtained with the Machine Learning algorithms are resumed in
Table 3. Apart from the Bayesian methods, most algorithms achieved an ac-
curacy value above the ZeroR predictions. The ZeroR algorithm is used here
as the baseline predictor, it just predicts the majority class. The algorithm
that achieved the best accuracy values was RandomForest, that is an ensem-
ble method. Basically RandomForest constructs several CART-like trees [6]
and produces its prediction by combining the prediction of the constructed
trees.

For some data mining applications having a very high accuracy is not
enough. In some applications it would be very helpful one can extract knowl-
edge that helps in the understanding of the underlying phenomena that pro-
duced the data. That is very true for most of Biological problems addressed
using data mining techniques. In the problem at hands in this paper we
have algorithms that can produce models that are intelligible to experts. J48
and Ridor are examples of such algorithms. Using J48 we mange to produce
a small size decision tree (shown in Figure 3) that uses very informative
attributes near the root of the tree.

Table 3 Accuracy results (%) of the different algorithms on data sets with windows
of size 2, 3, 4 and 5 residues before and after helix start

Window size
Algorithm 2 3 4 5

Ridor 83.4 80.6 76.1 77.3

J48 83.9 81.1 79.4 77.0

RandomForest 84.4 81.6 78.4 77.1

FT 79.9 80.5 80.2 75.5

ADTree 83.4 80.3 75.1 76.1

IBk 81.5 76.1 75.2 70.4

NaiveBayes 71.1 66.1 63.2 62.9

BayesNet 70.3 66.2 64.2 64.0

ZeroR 81.5 76.9 72.4 67.8
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criticalPointSize = tiny
| nHydroHydrophilicWb2 ≤ 1
| | xlogp3AtPositionA2 ≤ -1.5: noStart (3246.0/816.0)
| | xlogp3AtPositionA2 > -1.5: helixStart (51.0/24.0)
| nHydroHydrophilicWb2 > 1
| | rotatablebondcountAtPositionB1 ≤ 1
...
| | rotatablebondcountAtPositionB1 > 1
...
criticalPointSize = small
| criticalPtGroup = polarweak
| | chargeAtPositionGroupA2 = negativeneutral: helixStart (1778.0/390.0)
| | chargeAtPositionGroupA2 = neutralpositive
...
| criticalPointGroup = nonpolarweak: helixStart (1042.0/35.0)
criticalPointSize = large
| chargeAtPositionGroupA2 = negativeneutral
| | sizeAtPositionGroupB1 = tinysmall
...
| | sizeAtPositionGroupB1 = smalllarge
...

Fig. 3 Attributes tested near the root of a 139 node tree constructed by J48

5 Conclusions and Future Work

In this paper we have addressed a very relevant problem in Molecular Biology,
namely that of predicting when, in a sequence of amino acids, an α-helix will
start forming. To study this problem we have collected sequences of amino
acids from proteins described in the PDB. We have defined two class values:
a class of sequences were an α-helix starts forming and; all other types of
sequences where an α-helix does not start.

We have applied a set of Machine Learning algorithms and almost all of
them made predictions above the naive procedure of predicting the majority
class. We have achieved a maximum score of 84.4% accuracy with an ensemble
algorithm called Random Forest. We have also managed to construct a small
decision tree that has smaller accuracy than 80%, but that is an intelligible
model that can help in unveiling the chemical justification of the formation
of α-helices.
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A Data Mining Approach for the Detection of
High-Risk Breast Cancer Groups

Orlando Anunciação, Bruno C. Gomes, Susana Vinga, Jorge Gaspar,
Arlindo L. Oliveira, and José Rueff

Abstract. It is widely agreed that complex diseases are typically caused by the joint
effects of multiple instead of a single genetic variation. These genetic variations
may show very little effect individually but strong effect if they occur jointly, a phe-
nomenon known as epistasis or multilocus interaction. In this work, we explore the
applicability of decision trees to this problem. A case-control study was performed,
composed of 164 controls and 94 cases with 32 SNPs available from the BRCA1,
BRCA2 and TP53 genes. There was also information about tobacco and alcohol
consumption. We used a Decision Tree to find a group with high-susceptibility of
suffering from breast cancer. Our goal was to find one or more leaves with a high
percentage of cases and small percentage of controls. To statistically validate the
association found, permutation tests were used. We found a high-risk breast cancer
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group composed of 13 cases and only 1 control, with a Fisher Exact Test value of
9.7×10−6. After running 10000 permutation tests we obtained a p-value of 0.017.
These results show that it is possible to find statistically significant associations with
breast cancer by deriving a decision tree and selecting the best leaf.

1 Introduction

Association studies consist on testing the association between markers (called
single-nucleotide polymorphisms - SNPs) that are reasonably polymorphic and a
phenotype (for example, a disease). It has been pointed out that there is no single
haplotype for disease risk and no single protective haplotype but, rather, a collec-
tion of haplotypes that confer a graded risk of disease [7]. Probably there is a graded
influence of genetic variability in gene expression, whose control depends on many
elements [7].

In an association study it is necessary to consider interactions between genetic
variations. It is widely agreed that diseases such as ashtma, cancer, diabetes, hy-
pertension and obesity are typically caused by the joint effects of multiple genetic
variations instead of a single genetic variation [17] [23]. These multiple genetic
variations may show very little effect individually but strong interactions jointly, a
phenomenon known as epistasis or multilocus interaction [3] [26].

Methods for the detection of epistatic interactions are very important since if
the effect of one locus is altered or masked by effects at another locus, power to
detect the first locus is likely to be reduced and elucidation of the joint effects at
the two loci will be hindered by their interaction [3]. Recently, an increasing num-
ber of reasearchers have reported the presence of epistatic interactions in complex
diseases [5] [26], such as breast cancer [20] and type-2 diabetes [2]. Multifactor-
Dimensionality Reduction (MDR) method was used to find a four-locus interaction
associated with breast cancer [20]. MDR was also applied to find a two-locus in-
teraction associated with a reduced risk of type-2 diabetes [2]. Exhaustive search
methods such as MDR work well on small size problem. However, in Genome-
Wide Association studies, direct application of these methods is computationally
prohibitive [26].

A number of different methods have been used, including statistical methods
(e.g. ATOM [10]), search methods (e.g. BEAM [28]), regression methods (e.g.
Lasso Penalized Logistic Regression [24]) and machine learning methods (e.g. [11]
or MegaSNPHunter [25]). However, there is a need for new tools to accurately dis-
cover the relationship between combinations of SNPs, other genetic variations and
environmental exposure, with disease susceptibility in the context of Genome-Wide
Association Studies [15]. In this paper, we explore the applicability of decision tree
learning to a breast cancer association study.

In this work we are not trying to find a classifier for distinguishing between all
types of cases and controls. We are focused on finding a classifier that maximizes
the number of cases and minimizes the number of false positives (controls). We
want a classifier with low probability of producing false positives. Such classifier
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will miss many cases (high number of false negatives) but will have high accuracy
when someone is classified as a case (low number of false positives). Decision trees
have the ability to produce such a classifier if we select a leaf with few controls
and many cases. Decision tree inducers select at each step the variable that best
separates cases from controls, according to a certain splitting criterion (see Section
2.2 for more details), and are therefore suitable to find groups with low number of
false positives. On the other hand, decision tree induction is a greedy algorithm and
thus can have problems in the detection of multilocus interactions in which each
individual attribute is not associated with the disease (that is interactions with low
marginals). However, our results show that, even with this limitation, it is possible
to find a statistically significant association with the disease.

The ultimate goal of association studies is to facilitate a systems-based under-
standing of disease, in which we come to understand the full, molecular network
that is perturbed in disease [7]. The discovery of statistical interaction does not
necessarily imply interaction on the biological or mechanistic level. However, al-
lowing for different modes of interaction between potential disease loci can lead
to improved power for detection of genetic effects. We may, therefore, succeed in
identifying genetic variants that might otherwise have remained undetected [3].

2 Methods

In this section we present a brief description of the methods that were used and
describe our experimental procedure.

2.1 Data Description

We used a dataset produced by the Department of Genetics of the Faculty of Med-
ical Sciences of Universidade Nova de Lisboa with 164 controls and 94 cases,
all of them being portuguese caucasians. Of the 94 cases, 50 of them had its tu-
mour detected after menopause in women above 60 years old, while the other
44 had its tumour detected before menopause, in women under 50 years old.
The tumour type is ductal carcinoma (invasive and in situ). SNPs were selected
with Minor Allele Frequency above or equal to 5% for european caucasian pop-
ulation (HapMap CEU). Tag SNPs were selected with a correlation coefficient
r2 = 0.8. A total of 32 SNPs are available, 7 from the BRCA1 gene (rs16942,
rs4986850, rs799923, rs3737559, rs8176091, rs8176199 and rs817619), 19 from the
BRCA2 gene (rs1801406, rs543304, rs144848, rs28897729, rs28897758, rs15869,
rs11571836, rs1799943, rs206118, rs2126042, rs542551, rs206079, rs11571590,
rs206119, rs9562605, rs11571686, rs11571789, rs2238163 and rs1012130) and 6
from the TP53 gene (rs1042522, rs8064946, rs8079544, rs12602273, rs12951053
and rs1625895). SNPs belong to several parts of the gene: regulatory region, coding
region or non-coding region. The genotyping was done with real time PCR (Taqman
technology). Tobacco and alcohol consumption were also used as attributes for the
analysis.
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2.2 Decision Trees

Decision Tree Learning is one of the most widely used and practical methods for
classification [14]. In this method, learned trees can be represented as a set of if-then
rules that improve human readability. Decision trees are very simple to understand
and interpret by domain experts.

A decision tree consists of nodes that have exactly one incoming edge, except the
root node that has no incoming edges. A node with outgoing edges is an internal (or
test) node, while the other nodes are called leaves (also known as terminal nodes or
decision nodes).

Each internal node splits the instance space into two or more subspaces, accord-
ing to a discrete function on the input attributes values. Usually each discrete func-
tion is a test that considers a single attribute and its corresponding value. Each leaf
is associated with one class, representing a value of the target variable given the val-
ues of the variables represented by the path from the root node. The classification of
one instance is done by navigating from the root node down to a leaf, according to
the outcome of the tests along the path. For this to be possible, a decision tree must
cover the space of all possible instances. In a decision tree each node is labeled with
the attribute it tests, and its branches are labeled with its corresponding values.

Less complex decision trees increase model interpretability for domain experts.
However, the tree complexity has a crucial effect on its accuracy [1]. The tree com-
plexity is explicitly controlled by the stopping criteria used and the pruning method
employed.

To build a decision tree from a given dataset an algorithm called a decision tree in-
ducer is used. There are several inducers such as ID3 [18], C4.5 [19] and CART [1].

In general, inducing a minimal decision tree consistent with the training set is
NP-Hard [6]. It was also shown that building a minimal binary tree with respect
to the expected number of tests required for classifying an unseen instance is NP-
complete [8]. Even the problem of finding the minimal equivalent decision tree for
a given decision tree is NP-Hard [27].

Since building optimal decision trees is unfeasible in real problems, induction
algorithms must use heuristics. Most algorithms use recursive top-down approaches
which partition the training space. These algorithms are greedy since at each step
the best split is chosen (according to some splitting criterion) [21].

The splitting criterion is the criterion that is used for selecting the best split at
each step of the inducer algorithm. Splitting criteria can be univariate, which means
that only one attribute is used for partition the space at each step of the algorithm,
or multivariate in which multiple attributes are considered at each step. There are
several multivariate splitting criteria [1] [4] [16]. However, univariate splitting crite-
ria are simpler and more popular [21]. There are several univariate splitting criteria
such as Information Gain, Gain Ratio or Gini Index. In most cases, the choice of
splitting criteria will not make much difference on the tree performance [21].

Deciding when to stop building a decision tree is not an easy task. Stopping too
early may result in small and under-fitted decision trees. Stopping too late results
in overfitted decision trees. The typical way to deal with this problem is to create
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an overfitted decision tree and then perform pruning. There are several methods for
pruning of decision trees such as Reduced Error Pruning, Minimum-Error Pruning
or Minimum Description Length Pruning [13].

2.3 Statistical Validation

In this subsection we present the methods used to statistically validate our results.

2.3.1 Fisher Exact Test

Fisher’s exact test (FET) is a statistical test used to determine if there are nonrandom
associations between two categorical variables [22].

In the case of a 2× 2 matrix, the conditional probability of getting the actual
matrix given the particular row and column sums is given by Equation 1.

Pcutoff =
(a + b)!(c + d)!(a + c)!(b +d)!

n!a!b!c!d!
(1)

In Equation 1 a, b, c and d are the 4 entries of the 2×2 matrix and n = a+b+c+d.
If we want to calculate the p-value of the test, we can do it by computing the sum of
all p-values which are ≤ Pcutoff.

To compute the value of Fisher Exact Test given by Equation 1, we need to de-
compose it in order to avoid computing large factorials. An equivalent formulation
of Equation 1 is given by:

Pcutoff = es(a+b)+s(c+d)+s(a+c)+s(b+d)−s(n)−s(a)−s(b)−s(c)−s(d) (2)

in which s(m) = ∑m
i=1 log i.

This test will be applied to evaluate the quality of leaves in the decision tree as
described in Section 3.

2.3.2 Permutation Tests

Permutation tests are non-parametric procedures for determining statistical signif-
icance based on rearrangements of the labels of a dataset. It is a robust method,
but it can be computationally intensive. A test statistic, which is computed from
the dataset, is compared with the distribution of permutation values. These permu-
tation values are computed similarly to the test statistic, but, under a random rear-
rangement of the labels of the dataset [9]. Permutation tests can help to reduce the
multiple testing burden [12] and can be used to compare statistical tests [10].

In bioinformatics, permutation tests have become a widely used technique. The
reason for this popularity has to do with its non-parametric nature, since in many
bioinformatics applications there is no solid evidence or sufficient data to assume
a particular model for the obtained measurements of the biological events under
investigation [9].

The main disadvantage of permutation testing is that it needs a very large num-
ber of permutations when small p-values are to be accurately estimated, which is
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computationally expensive. To address this problem, the tail of the distribution of
permutation values can be approximated by a generalized Pareto distribution [9].
According to [9] accurate P-value estimates can be obtained with a drastically re-
duced number of permutations when compared with the standard empirical way of
computing p-values.

3 Experimental Procedure

In order to find a group with high-susceptibility of suffering from breast cancer, we
started by applying decision trees with a 10-fold cross validation strategy. 10-fold
cross validation is a strategy that is based on performing 10 iterations. In each of the
10 iterations, a different portion of 1/10 of the dataset is used as an independent test
set while the remaining 9/10 of the dataset is used for training.

To conduct our experiments, we used Weka J48 Decision Tree which generates
a C4.5 decision tree. Several parameters were tested such as the confidence factor
used for pruning, whether to use binary splits or not, whether to prune the tree or
not and the minimum number of instances per leaf. For each different combination
of parameters, we saved the average classification accuracy of the 10 folds. We
then selected as the best combination of parameters, the combination that had a
higher average classification accuracy on 10-fold cross validation. We used the C4.5
decision tree inducer algorithm with the best combination of parameters using the
entire dataset for training in order to build our final model.

After our final model is built, we looked into the tree, selected the best leaf L ac-
cording to Fisher Exact Test value (lower values of FET mean stronger associations)
and saved this value, FET(L).

In order to statistically validate our detected association, we used 10000 permu-
tation tests. We state as our null hypothesis H0 that there is no association between
our variables and the phenotype. If we find a strong association between one or more
variables and the phenotype, then we can reject our null hypothesis. In order to test
whether our null hypothesis can be rejected, for each permutation test we randomly
permute labels (phenotype attribute). We then build a new decision tree with the
same parameters as in our original dataset. We check all leaves from the decision
tree and save the lowest FET value. This means that in each permutation test we save
the FET value of the best leaf. In the end of the execution of the permutation tests,
we have 10000 FET values that were generated according to the underlying and un-
known distribution of the null hypothesis. We can then check where the FET value
of our leaf L stands on the estimated distribution of our null hypothesis. This way
we can see if FET(L) is extreme enough so that we can reject the null hypothesis
with high statistical confidence, therefore obtaining our adjusted p-value.

4 Results

Figure 1 shows the decision tree learned over the entire dataset using the best pa-
rameters found in 10-fold cross validation. We can see that the attribute on the root
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Fig. 1 Decision Tree Model learned on our dataset. In the leaves there is information about
the controls/cases distribution

of the tree is alcohol. On the questionnaires, people answered if they drink alcohol
with meals (often), socially (occasionally) or if they do not drink alcohol at all (no).
There is a very interesting leaf L in this tree: Alcohol=often and rs206118=TT and
rs2126042=GG. The group of people that has this combination of factors is com-
posed by 13 cases and only 1 control. This gives us a FET(L) = 9.7× 10−6. The
adjusted p-value obtained with 10000 permutation tests as described in Section 3
was 0.017, which means that we can reject our null hypothesis at the 2% level of
confidence.

5 Conclusions and Future Work

With this methodology, we showed that it is possible to find statistically significant
associations from a breast cancer data set. However, this methodology needs to be
evaluated in a larger set of examples in order to find associations with a higher
degree of statistical confidence. Using a larger data set will also enable us to find
correlations between a bigger set of genes and SNPs. We have to be very careful
when trying to extract biological knowledge from the statistical conclusions. In this
work we found an association from leaf L that involves alcohol consumption and
two SNPs from BRCA2 gene. To extract biological knowledge from this detected
association we have to take into account that SNPs were selected for genotyping
using a tag SNP selection method with a correlation coefficient r2 = 0.8. This means
that if this detected association has an underlying biological process that supports it,
we cannot say which SNPs are involved: if SNPs rs206118 and rs2126042 or other
SNPs that are in linkage disequilibrium with these two. This means that to extract
biological knowledge from a statistically significant association we will need expert
knowledge about biological processes related to breast cancer.

We also have to take into account that decision tree learning is a greedy algorithm.
It selects at each step the SNP that maximizes the splitting criterion used which has



50 O. Anunciação et al.

the problem that interactions in which each individual attribute is not associated with
the disease (that is interactions with low marginals) are not detected. The algorithm
has to be modified in order to be able to also detect interactions with low marginals.

Acknowledgements. The authors acknowledge financial support from Fundação para a
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GRASP for Instance Selection in Medical Data 
Sets 

Alfonso Fernández, Abraham Duarte, Rosa Hernández, and Ángel Sánchez 

1 

Abstract. Medical data sets consist of a huge amount of data organized in instances, 
where each one contains several attributes. The quality of the models obtained from 
a database strongly depends on the information previously stored on it. For this rea-
son, these data sets must be preprocessed in order to have fairly information about 
patients. Data sets are preprocessed reducing the amount of data. For this task, we 
propose a GRASP algorithm with two different improvement strategies based on 
Tabu Search and Variable Neighborhood Search. Our procedure is able to widely 
reduce the original data keeping the most relevant information. Experimental results 
show how our GRASP is able to outperform the state of the art methods. 

1   Introduction 

Almost every day, medical staff diagnoses whether a patient has a disease or not 
in order to apply the pertinent treatment. The diagnosis is based on different ana-
lyses/tests performed to the patient and the expertise of the doctors. This process 
could be eased if medical staff were able to find common patterns with other pa-
tients that have suffered the same disease. In this way, if it is compared the medi-
cal record of the current patient with other patients previously treated, doctors 
could infer a diagnosis based of the history. However, it means to deal with mas-
sive amounts of information and collections of data. A very active line of research 
focuses on scaling down data, where the main problem is how to select the rele-
vant data. This task is carried out in the data preprocessing phase in a Knowledge 
Discovery in Databases (KDD) process. The goal of this area consists of  
withdrawing relevant information from databases using a systematic and detailed 
analysis of the data [5]. This information is used in Data Mining, DM, to create 
models useful for science, engineering or economy [8]. As it is reported in the lit-
erature, DM models are very dependent on the quality of the stored data.  There-
fore, the first phase KDD is the preprocessing the original data whose main target 
is improving the “quality” of data. 
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In Data Mining there are several preprocessing techniques. Among them, we 
can highlight Data Reduction, Data Cleaning, Data Integration and Data Trans-
formation. The reader is referred to [1] to find detailed descriptions of these 
strategies. In this work, we focus on Data Reduction (DR). It can be achieved in 
many ways. Specifically, in the literature we can find DR based on selecting fea-
tures, making the feature-values discrete and selecting instances. This paper is de-
voted to Instance Selection (IS) as DR mechanism [11]. IS consists of reducing the 
number of rows in a data set where each row represents an instance. There are 
several IS strategies. Among them we can highlight sampling, boosting, prototype 
selection, and active learning. We will study IS from the prototype selection (PS) 
perspective, called IS-PS. 

There are several papers in the literature that have studied this topic. Most of 
them are based on Evolutionary Strategies. The first relevant paper, presented by 
Kuncheva [10], is an Evolutionary Algorithm for PS. In [1] is presented PBIL as 
the first combination of Genetic Algorithm and Competitive Learning designed for 
searches in binary spaces. Eshelman presented in [3] CHC, considered a reference 
in the Genetic Algorithm field because it introduces a diversity mechanism to ob-
tain a good balance between intensification and diversification in the search proc-
ess. Cano et al introduced in [2] a Memetic Algorithm, MA, that solves the  
scalability problem in prototype selection. Finally, in [6] is presented the most re-
cent work in the context of IS-PS. It is an improved MA, called SSMA, which 
outperforms previous approaches. 

In this work, we have designed a procedure based on several metaheuristics, to 
preprocess medical data sets. The goal of our procedure consists of reducing the 
set of original data obtaining a subset of data that fairly represents the original set.  

2   Preprocessing in KDD 

In general, data sets are arranged on a table, OriginalTable, where each row corre-
sponds to an Instance and each column to an attribute. Each instance is character-
ized by a set of attributes and classified in a determined class (according to the 
values of their corresponding attributes). IS techniques construct a smaller table, 
ReducedTable, selecting the smallest set of instances that enable a given algorithm 
to predict the class of a query instance with the same (or higher) accuracy as the 
original set. This reduction improves both space and time complexities of subse-
quent DM strategies. It is important to remark that removing instances does not 
necessarily lead to a degradation of the results. This behavior could be explained 
taking into account that some data with noise or repeated be deleted by removing 
instances. 

The main goal of our proposal consists of constructing the ReducedTable ⊂ 
OriginalTable with the most representative instances and the larger capacity of 
classifying new instances. In order to classify an instance in the corresponding 
class, we will use the Nearest Neighborhood (1-NN strategy) as customary. In or-
der to classify a new instance using ReducedTable, we compute the distances from 
this new instance to the rest of instances in ReducedTable. Finally, the new in-
stance is assigned to the same class of the nearest neighbor one. As in previous 
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works, we use the Euclidean distance defined in an n-dimensional space, where n 
represents the number of attributes [2].   

To determine the quality of the IS-PS technique we define a fitness function 
that combines two values: the classification performance (%Clas) and the percent-
age of reduction (%Red). This function is a tradeoff between the ability of Re-
ducedTable to classify instances and the reduction in the data performed for  
IS-PS. In mathematical terms, the fitness function f is: 

                                        f = α*(%Clas) + (1-α)*(%Red)                                     (1) 

The 1-NN classifier is used for measuring the classification rate, %Clas, and  
denotes the percentage of correctly classified instances and %Red, is defined as: 

             %Red = 100* (|OriginalTable| - |ReducedTable|)/|OriginalTable|           (2) 

where |OriginalTable| is the number of instances in the original table and 
|ReducedTable| is the number of instances in the reduced table. The objective of 
the proposed algorithm is to maximize the fitness function. As a consequence, it is 
maximized the classification rate and minimized the resulting number of in-
stances. The value of α ranges from 0 to 1. It measures the emphasis given to pre-
cision (percentage of classification) and reduction (percentage of reduction). In 
this work, we set α to 0.5, balancing precision and reduction. 

3   GRASP for IS-PS 

The GRASP methodology was developed in the late 1980s, and the acronym was 
coined by Feo and Resende in 1995[4]. Each iteration consists of constructing a 
trial solution and then applying an improvement procedure to find a local optimum 
(i.e., the final solution for that iteration). The construction phase is iterative, ran-
domized greedy, and adaptive. In this section we describe our adaptation of the 
GRASP methodology to IS-PS. 

3.1   Constructive Algorithm 

The construction phase is greedy, randomized and adaptive. It is greedy because 
the addition of each element is guided by a greedy function. It is randomized be-
cause a random selection takes place and the information provided by the greedy 
function is used in combination with this random element. Note that the random-
ness in GRASP allows multiple iterations obtaining different solutions. Finally, it 
is adaptive because the element chosen at any iteration in a construction is a  
function of those previously chosen (updating relevant information from one  
construction step to the next).  

In the context of IS-PS, the constructive algorithm starts by computing the cen-
ter of gravity of a class. The center, s_center(X), of a set of elements belonging to 
class X = {si : i ∈ I} is defined as: 
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 (3) 

where I represent the set of different attributes. s_center(X) is “virtual” instance 
where the value of each attribute is computed as the average of the attributes of 
every instance that belongs to X. In order to have a “real” instance instead of a 
“virtual” instance, we select from the original table the nearest instance to each 
virtual instance. Therefore, if the data set has m classes, we compute m centers of 
gravity (one for each class), and we initialize ReducedTable with these m real in-
stances. One time we have this table; we can compute the fitness as defined above. 
Obviously, we will have the largest possible percentage of reduction but the per-
centage of classification is worst. 

To simplify the notation, we call Sel as the set of instances in ReducedTable 
and Unsel as the set of instances in OriginalTable – ReducedTable. Sel contains 
the set of selected instances and Unsel contains the set of unselected instances. 

The GRASP constructive procedure improves %Class by adding new instances 
to Sel one at a time. In order to do so, it is computed the fitness f(v), for each in-
stance v ∈ Unsel if instance v were included in Sel. Notice that the larger f(v) the 
better the improvement.  This is the greedy part of the algorithm. 

All the instances in Unsel with a fitness value strictly positive are candidates to 
be included in Sel. We call them as Candidate List (CL),  

CL = {v ∈ Unsel / f(v) > 0} (4) 

We define the Restricted Candidate List (RCL), as the set of elements with larger 
f(v) values. In mathematical terms: 

RCL = {v ∈ CL / f(v) ≥ fth} (5) 

where fth is a threshold computed as a percentage β between the maximum, fmax, 
and minimum, fmin), values of the instances in Unsel: 

fth = fmin + β( fmax – fmin) (6) 

where fmax = max f(v) fmin = min f(v) with v ∈ CL. If β =1, the algorithm is com-
pletely greedy. On the other hand, if β = 0 the algorithm is purely random. To fa-
vor the “diversification” of the procedure, an instance is randomly selected at each 
iteration to be included in Sel. This is the random part of the algorithm. The inclu-
sion of the new instance in Sel yields to a modification of the computation of f(v) 
and then, to a new RCL. This is the adaptive part of the algorithm. 

The constructive process is maintained, including instances into Sel, until no  
further improvement in the fitness is obtained. Then it stops and returns the  
constructed solution. 

3.2   Local Search 

The second phase of our solving method is an improvement procedure. Specifi-
cally, we propose a local search, LS, based on removing/adding instances. It 
means that solutions reachable from the incumbent one are those constructed by 
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removing or adding one instance to Sel. Specifically, LS starts by removing in-
stances from Sel until no further improvement in the fitness value is obtained. 
Then, the local search resort to add new instances, selecting in each iteration an 
instance in Unsel able to improve the current fitness. LS performs insertion 
movements while the fitness value increases. LS keeps removing/ adding instances 
until no further improvement is possible. 

3.3   Tabu Search 

Tabu Search, TS is a metaheuristic that guides a local search procedure to explore 
the solution space beyond local optimality [7]. One of the main components of TS 
is its use of adaptive memory, which creates more flexible search behavior.  

The structure of a neighborhood in TS goes beyond that used in local search by 
embracing the types of moves used in constructive and destructive processes 
(where the foundations for such moves are accordingly called constructive neigh-
borhoods and destructive neighborhoods). We can implement memory structures 
to favor (or avoid) the inclusion of certain elements in the solution previously 
identified as attractive (or unattractive). Such expanded uses of the neighborhood 
concept reinforce a fundamental perspective of TS, which is to define neighbor-
hoods in dynamic ways that can include serial or simultaneous consideration of 
multiple types of moves.  

We propose a TS strategy based on LS. In destructive neighborhoods, TS se-
lects the instance x in Sel with the lowest contribution, f(x), to the fitness function. 
It means that we would obtain the best possible fitness removing x. On the other 
hand, in constructive neighborhoods, TS selects the instance y in Unsel which 
were able to improve upon the fitness value. Every instance involved in a move-
ment becomes tabu for Tenure iterations. As it is customary in TS, we permit non-
improving moves that deteriorate the objective value. TS stops after MaxIterations 
without improving the best found solution. 

3.4   Variable Neighborhood Search 

The Variable Neighborhood Search (VNS), proposed by Hansen and Mladenovíc 
[9], is a metaheuristic whose basic idea is a systematic change of neighborhood 
within a local search. Each step in VNS has three major phases: neighbor genera-
tion, local search and jump. Unlike to other metaheuristics, VNS allows changes 
of the neighborhood structure during the search. VNS explores increasingly 
neighborhoods of the current best found solution. The basic idea is to change the 
neighborhood structure when the local search is trapped on a local minimum. 

Let Nk, k = 1,…, kmax be a set of predefined neighborhood structures and let 
Nk(x) be the set of solutions in the kth-order neighborhood of a solution x. Specifi-
cally the kth-order neighborhood is defined by all solutions that can be derived 
from the current one by selecting k instances and transferring each instance from 
Sel to Unsel and vice versa. 

Our VNS strategy is based on LS, but it generalizes the constructive/destructive 
neighborhoods.  Specifically, starting from a solution x, VNS select k instances at 
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random (instead of 1) to be added to/removed from Sel obtaining a solution y. Af-
ter that, it applies LS. If the new improved solution has a better fitness than the 
original one, then k is set to 1 and the search jumps to the new solution. Other-
wise, k = k+1 and VNS tries again to add/remove k instances at random. The  
procedure stops when k reaches a maximum value. 

5   Experimental Results  

All experiments were conducted on a personal computer with a Pentium IV Core 2 
Duo 2.27 GHz with 2 GB RAM. We coded all the procedures in Java and the 
number of iterations of the GRASP algorithm was set to 20. 

In order to evaluate the behavior of the algorithms applied in different size data 
sets, we have carried out a number of experiments increasing complexity and size 
of data sets. We have selected seven test sets, which cover a wide size range, as 
we can see in Table 1. They are available at http://archive.ics.uci.edu/ml/.   

Table 1 Medical datasets 

Name Instances Attributes Classes 

Lymphography 148 18 4 

Cleveland 303 14 2 

Bupa 345 7 2 

Wisconsin 683 9 2 

Pima 768 8 2 

Splice 6435 36 3 

Thyroid 7200 21 3 

 
For example, Cleveland data set contains information about patients with or 

without cardiovascular problems. Some of its attributes are the number of ciga-
rettes smoked a day, the age of the patient or if an antecessor of the family of the 
patient suffered from similar problems. In Wisconsin, the data are gathered from 
the analysis of different samples of lung tissue of patients that could suffer from 
lung cancer. In this case, the attributes correspond to measurements of cell mor-
phology such as area, radius or perimeter. Splice junctions are points on a DNA 
sequence at which “superfluous” DNA is removed during the process of protein 
creation in higher organisms. This problem consists of three subtasks: recognizing 
exon/intron boundaries (referred to as EI sites), recognizing intron/exon bounda-
ries (IE sites) or none of them. 

Table 2 reports the average results for the test sets introduced in Table 1. All 
the results were computed using a 10-fold cross validation scheme showing the 
average values. In the first column, CPU Time, we report the average running 
time. In the second column, %Class, is represented the average percentage of clas-
sification with its corresponding standard deviation. Finally, in the third column, 
%Red, shows the average percentage of reduction. 
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Table 2 Results for all the medical datasets 

Name GRASP_TS GRASP_VNS 

 CPU Time %Class %Red CPU Time %Class %Red 

Lymphography 6.18 91.67 ± 1.19 90.69 ± 1.35 0.89 90.32 ± 1.09 92.19 ± 0.81 

Cleveland 30.9 69.18 ± 1.59 90.42 ± 1.27 7.96 65.74 ± 1.45 93.19 ± 0.83 

Bupa 37.8 85.76 ± 1.12 91.40 ± 1.20 5.93 79.97 ±1.46 96.01 ± 0.73 

Wisconsin 105.5 98.15 ± 0.28 99.38 ± 0.18 4.75 97.82 ± 0.31 99.61 ± 0.08 

Pima 172.2 81.48 ± 1.12 97.11 ± 0.68 45.5 80.93 ± 0.70 98.44 ± 0.21 

Splice 12384 92.30 ± 0.46 95.53 ± 0.26 3418 91.05 ± 0.46 96.35 ± 0.26 

Thyroid 7695 95.11 ± 0.22 99.50 ± 0.10 3067 94.96 ± 0.12 99.64 ± 0.09 

 
Table 2 shows the merit of the proposed procedures. Our GRASP implementa-

tions, GRASP_TS and GRASP_VNS, consistently produce high quality solutions. 
GRASP_TS marginally improves GRASP_VNS in terms of %Class, while 
GRASP_VNS improves GRASP_TS in terms of %Red. Summarizing, the behav-
ior of both procedures is quite similar. The robustness of the method fact can be 
observed in the small value of the standard deviation. Regarding the percentage of 
reduction, as an example, in the test set Wisconsin, the final ReducedTable con-
tains only two instances (one for each class) classifying correctly on average 
97.65% of the instances. On the other hand, it is important to remark that our ap-
proach is able to reduce the set of instances from thousands (i.e Thyroid) to tens 
(1%), with a CPU time considerably larger. 

Having determined the quality of our algorithm, we compare our GRASP algo-
rithms with the best method identified in previous studies [6]. We employ in each 
experiment not only the same test sets but also the conditions and evaluation  
criteria found in the respective papers. Tables 3 shows the fitness value for both 
procedures executed over the whole test set.  

Table 3 Results for medium medical datasets 

Name GRASP_TS GRASP_VNS SSMA 

Lymphography 91.18 ± 0.50 91.26 ± 0.41 75.23 ± 1.47

Cleveland 79.80 ± 0.30 79.46 ± 0.45 80.68 ± 0.82

Bupa 88.58 ± 0.38 87.99 ± 0.54 85.78 ± 1.07

Wisconsin 98.76 ± 0.14 98.71 ± 0.15 98.52 ± 0.11

Pima 89.29 ± 0.38 89.68 ± 0.33 89.77 ± 0.48

Splice 93.91 ± 0.14 93.70 ± 0.14 75.23 ± 1.47

Thyroid 97.30 ± 0.09 97.30 ± 0.07 97.08 ± 0.11

Avg. Value 91.26 ± 0.28 91.16 ± 0.29 86.04 ± 0.79

 
The best values of the fitness are bolded. The results in Tables 3 indicate that 

GRASP is capable of finding high quality solutions, defeating to SSMA in 5 (out 
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of 7) test sets. Regarding the average fitness GRASP compares favorably to 
SSMA in both improvement methods (TS and VNS). 

6   Conclusions 

We have described the development and implementation of a GRASP algorithm 
for IS–PS problem. We propose a new constructive procedure based on the  
computation of the center of gravity. We have also described a new improvement 
method based on two different types of movements: exchanges and add/remove 
instances. Additionally, we have proposed two advanced improvement strategies 
based on the TS and VNS methodologies. We are able to produce a method that 
reaches good quality solutions on previously reported problems. Our algorithm is 
compared to state-of-the-art methods and the outcome of our experiments seems 
quite conclusive in regard to the merit of the procedure that we propose. 
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Expanding Gene-Based PubMed Queries 

Sérgio Matos, Joel P. Arrais, and José Luis Oliveira 

1 

Abstract. The rapid expansion of the scientific literature is turning the task of find-
ing relevant articles into a demanding one for researchers working in the biomedi-
cal field. We investigate the use of a query expansion strategy based on a thesaurus 
built from standard resources such as the Entrez Gene, UniProt and KEGG data-
bases. Results obtained on the ad-hoc retrieval task of the TREC 2004 Genomics 
track show that query expansion improves retrieval performance on gene-centered 
queries. An overall mean average precision of 0.4504 was obtained, which  
corresponds to an increase of 96% over the use of PubMed as the retrieval engine. 

Keywords: Query Expansion, Information Retrieval, Biomedical Literature. 

1   Introduction 

The rapid expansion of the scientific literature, especially in the biomedical field, 
is creating many difficulties for researchers, who need to keep informed about 
their area of work. In fact, since much more information and publications are  
produced every day, knowing about the latest developments or finding articles sat-
isfying a particular information need is rapidly becoming a demanding task. Struc-
tured information, annotated in various biomedical databases, has helped alleviate 
this problem. However, many relevant research outcomes are still only available 
in the literature, which remains the major source of information. A significant 
challenge for researchers is therefore how to identify, within this growing number 
of publications, the relevant articles for their specific study. This has led to an  
increasing interest in the application of text mining and information retrieval 
methods in biomedical literature [1-4]. 

MEDLINE, the major biomedical literature database, indexes over 17 million 
citations, which are accessible through the PubMed information retrieval system. 
PubMed facilitates access to the biomedical literature by combining the Medical 
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Subject Headings (MeSH) based indexing from MEDLINE, with Boolean and 
vector space models for document retrieval, offering a single interface from which 
these articles can be searched [5]. However, and despite these strong points, there 
are some limitations in using PubMed or other similar tools. A first limitation 
comes from the fact that user queries are often not fully specified or clear, which 
is a main problem in any information retrieval (IR) system [6]. This usually means 
that users will have to perform various iterations and modifications to their queries 
in order to satisfy their information need. Another drawback is that PubMed does 
not sort the retrieved documents in terms of how relevant they are for the user 
query. Instead, the documents satisfying the query are retrieved and presented in 
reverse date order. This approach is more suitable to users familiar with a particu-
lar field who want to find the most recent publications. However, if this is not the 
case, the most relevant documents may appear too far down the result list to be 
easily retrieved by the user. 

To address the issues mentioned above, several tools have been developed in 
the past years that combine information extraction, text mining and natural lan-
guage processing techniques to help retrieve relevant articles from the biomedical 
literature [4, 7].  Despite the availability of such applications, we feel that the de-
mand for tools that help finding references relevant for a set of genes is still not 
fully addressed. This constitutes an important query type, as it is a typical outcome 
of many experimental techniques. The ability to rapidly identify the literature de-
scribing these genes and relations among them may be critical for the success of 
data analysis. In such cases, the problem of obtaining the documents which are 
more relevant to the user information need becomes even more critical because of 
the large number of genes being studied, the high degree of synonymy and multi-
plicity of spelling variations, and the ambiguity in gene names.  

This article presents evaluation results of a previously proposed method for ex-
panding gene-based literature queries [8]. The evaluation was performed on a set of 
17 pre-selected gene-centered queries from the ad-hoc retrieval task of the TREC 
2004 Genomics track. In order to assess the gain obtained with the proposed 
method, we compare the retrieval performance against the use of PubMed and 
against searching a local index of MEDLINE, when no query expansion is used.  

2   Query Expansion 

The query expansion (QE) strategy presented here follows two different perspec-
tives. The first one expands each gene in the query to its known synonyms, in or-
der to deal with the different synonyms and spelling variations that can be found 
in the literature for a given gene [9, 10]. The second perspective includes gene-
related terms or concepts in the query, following the ideas of concept-based query 
expansion [11, 12]. The approach is based on a thesaurus built from standard re-
sources such as the Entrez Gene, UniProt and KEGG databases, and from well-
established relations between the genes and biological concepts in these resources. 
This is implemented as a local relational database through which a gene symbol 
can be expanded to all known synonyms and to the related biomedical entities. 
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Here we present results using gene synonyms, protein names and metabolic path-
ways as expansion terms, but the approach is general and can be expanded to  
include other concepts such as diseases or biological processes. 

Query expansion works as follows: for each gene symbol in a gene-based 
query, the alternative gene symbols, protein names and metabolic pathways are 
obtained from the database. Then, for each of these terms, we search a local 
MEDLINE index and retrieve the documents matching that term and the respec-
tive search score. All results, composed of a document-score pair, are kept on 
three different lists, one for each class of search terms: gene, protein, and pathway. 
Finally, all scores for each retrieved document are accumulated, resulting in a final 
score for that document. The reason for using separate results lists for each con-
cept class is that different weights can be used when accumulating the scores,  
giving different significance to either class as desired [8]. Fig. 1 illustrates an  
example of this method. 

 

Fig. 1 Query expansion example. Gene query: ‘CREB1, ATF1, MAPK14’ 
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3   Results 

To evaluate the effectiveness of the proposed method in improving retrieval re-
sults for gene-based queries, we tested the performance in terms of the TREC 
2004 ad-hoc retrieval task [13]. However, since we follow a gene-centered meth-
odology, general queries such as “Gene expression profiles for kidney in mice” or 
“Cause of scleroderma” had to be excluded. From the 50 available queries, 17 that 
were found as being more centered in a particular gene (or set of genes) were se-
lected. Furthermore, rather than using a more specified query such as the ones 
used in TREC, these queries had to be pre-processed to select just the gene names. 
For example, for the queries “Role of TGFB in angiogenesis in skin” and “Role of 
p63 and p73 in relation to DNA damage”, only the gene name(s) are used for 
searching (“TGFB” and “p63, p73”, respectively).  

As mentioned in the previous section, an important characteristic of the pro-
posed strategy is the use of weights for each class of associated concepts used in 
query expansion. Assigning these weights has a considerable effect in the ordering 
of retrieved documents and consequently, in retrieval performance. In order to 
measure this effect, we empirically selected the best weights for maximizing  
performance. We ran different experiments and compared the results to a baseline 
obtained by using PubMed as the search engine. In that case, we used the Entrez 
e-utils [14] to retrieve a maximum of 10000 documents for each query, limited to 
the dates covered in the TREC 2004 document collection (from 1994 to 2003, in-
clusive). The queries used in PubMed were composed of the gene symbols in the 
TREC queries, joined by a disjunction (‘OR’) in the cases of queries with more 
than one gene. The results obtained are shown in Fig. 2 and Fig. 3. For the other 
results shown, we used a local index of the MEDLINE database, created with the 
Lucene indexing software [15]. We calculated the retrieval performance using the 
genes in the queries (no expansion), using just the gene synonyms in the expan-
sion, using all concepts, and finally, using all concepts and empirically selecting, 
for each individual query, the weights that maximize the mean average precision 
(MAP) value. 

Using the QE methodology proposed, a mean average precision of 0.4504 can 
be achieved for these 17 queries, when the best weights, for each concept class, 
are selected for each query. This compares to a MAP value of 0.2295 when using 
PubMed (an increase of 96%) and to 0.2920 when the local MEDLINE index is 
searched without any query expansion (an increase of 54%). Using gene syno-
nyms in the query already improved the results to a MAP value of 0.3276, corre-
sponding to a 12% increase as compared to no expansion, and 43% as compared 
to PubMed. 

Also shown are other metrics commonly used for assessing retrieval perform-
ance: reciprocal rank, which measures the inverse rank of the first relevant article 
retrieved (average 0.6526 versus 0.1961 in PubMed and 0.7005 for no expansion); 
precision after ten documents retrieved (0.5118 versus 0.1412 and 0.3882); preci-
sion after 100 documents retrieved (0.3412 versus 0.1659 and 0.2365); and recall 
after 1000 documents (0.6982 versus 0.5521 and 0.4426). The reciprocal rank  
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Fig. 2 Performance results on the TREC 2004 ad-hoc retrieval task: mean average precision 
(MAP); reciprocal rank; precision after 10 and 100 documents; and recall after 1000 documents 

 

results show that, in average in these 17 queries, only the fifth document in the 
PubMed results is a relevant document, according to the TREC data. In compari-
son, in our results, either the first of second documents retrieved are, in average, 
relevant. This difference is related to the fact that the results returned by PubMed 
are not ranked by relevance. Another interesting result is that the reciprocal rank 
obtained from searching the index with no query expansion, i.e. using just the 
gene symbol, is slightly higher than when synonyms or associated concepts are 
added to the query (Fig. 2). This reflects the fact that QE may lead to query drift, 
which leads to non-relevant documents being added to the results. On the other 
hand, we can also see from the results that the weighting mechanism allows  
alleviating this problem and improves the results.  

 

 
Fig. 3 Performance results on the TREC 2004 ad-hoc retrieval task for each individual query 
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As can be seen from the results, although searching the local index using just 
the gene symbol(s) in the query gives an improvement in all other statistics, as 
compared to PubMed, the obtained recall is significantly lower. However, when 
gene synonym expansion was used, the recall achieved the same level as with 
PubMed (0.5620). The best recall was obtained with the proposed QE method, 
with an improvement of 26% over the use of PubMed.  

4   Discussion 

We present the evaluation results of a query expansion method for gene-based lit-
erature queries. The proposed approach tries to address many problems related to 
genomic information retrieval, namely: how to deal with the various names and 
symbols used for a particular gene [9-10, 16]; how to address the user information 
need in terms of what are the concepts related to the genes that the user is most in-
terested in; and what is the best query expansion strategy for this specific problem, 
particularly, what are the best terms to use for expanding the query and how 
should these terms contribute to the expanded query results [16, 17].  

The results presented here indicate good overall performance of the proposed 
method, especially when compared to the use of PubMed. Although PubMed uses 
query expansion through Automatic Term Mapping (ATM), and includes manu-
ally annotated information in the search, through MeSH terms [18], our evaluation 
results show a 96% increase in mean average precision (0.4504) as compared to 
PubMed (0.2295). The reduced performance obtained with PubMed in this type of 
task, and using these performance measures, is related to the lack of any relevance 
ranking of the resulting documents, leading to relevant documents appearing 
lower in the returned list. However, since PubMed is still the most popular litera-
ture retrieval tool used by biomedical researchers, we feel that using it as a base-
line for comparing our results is a valid approach. Also, evaluation metrics such as 
the mean average precision try to reflect how effectively the retrieval results sat-
isfy a particular information need expressed in the query, giving more emphasis to 
relevant documents that appear higher in the results list. Additionally, our results 
also show significant improvements in terms of precision and recall. 

Although performance measures based on a manually annotated test set give 
some indication of the method’s retrieval performance, the 2004 TREC genomics 
evaluation data and methodology may not be entirely suited for testing our 
method. First of all, it is oriented to a very specific query type as are gene-based 
queries. Additionally, not all query types in the TREC task could be used. Since 
this is a gene-centered method, we had to exclude the majority of the queries, end-
ing up with 17 which were considered to be more focused on a particular gene (or 
set of genes). These limitations imply that the results obtained do not allow a 
completely valid comparison with other systems that use the same evaluation, in-
cluding the ones that participated in the TREC task and other more recent ones. 
Nonetheless, we consider that these results and the analysis presented here show 
that this method can be used to improve retrieval results for this particular type of 
queries. 
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A common problem in genomic information retrieval is that of ambiguity, that 
is, the same symbol identifying different genes and/or proteins. The query expan-
sion method discussed here helps addressing this problem through the inclusion of 
related terms in the query. This is because documents containing more terms asso-
ciated to the input genes will have a higher ranking. For example, an abstract con-
taining the terms ‘CAT’ and ‘catalase’ will have higher relevance than an abstract 
containing just the ambiguous term ‘CAT’. We plan to further explore this aspect 
by introducing reliability (or ambiguity) scores to the terms in our thesaurus. 

5   Conclusions 

This paper presents an evaluation of a concept-oriented query expansion method-
ology for searching the MEDLINE literature database using gene-based queries. 
The approach allows finding documents containing concepts related to the genes 
in the user input, such as proteins and pathway names. Results obtained using the 
TREC 2004 ad-hoc retrieval data show a considerable improvement over the use 
of PubMed, as measured by the MAP statistic. 
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Improving Cross Mapping in Biomedical 
Databases 

Joel Arrais, João E. Pereira, Pedro Lopes, Sérgio Matos, and José Luis Oliveira 

1 

Summary. The complete analysis of many large scale experiments requires  
the comparison of the produced output with data available in public databases. 
Because each datapbase uses its own nomenclature to classify entries, this task 
frequently implies the conversion of identifiers and, due to incomplete mapping 
between those identifiers, this tasks commonly causes loss of information. 

In this paper, we propose a methodology to improve the coverage of the map-
ping between database identifiers. As a starting point we use a local warehouse 
with the default mappings from the most relevant biological databases. Next we 
apply a methodology to four database identifiers (Ensembl, Entrez Gene, KEGG 
and UniProt). The results showed an improvement in the coverage of all relation-
ships superior to 10% in three and to 7% in five relations. 

Keywords: Biomedical databases, identifiers mapping. 

1   Introduction 

The integration of heterogeneous data sources has been a fundamental problem in 
database research over the last two decades [1]. The goal is to achieve better 
methods to combine data residing at different sources, under different schemas 
and with different formats in order to provide the user with a unified view of the 
data. Although simple in principle, several constrains turn this into a very chal-
lenging task where both the academic and the commercial communities have been 
working and proposing several solutions that span a wide range of fields. 

Life sciences is just one of many fields that take advantage from the advances 
in data integration methods [2]. This is because the information that describes 
genes, gene products and the biological processes in which they are involved are 
dispersed over several databases [3]. In addition, due to the advances in some high 
throughput techniques, such as microarrays, the experimental results obtained in 
the laboratory are only valuable after being matched with data stored in public d 
atabases [4]. 
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One major issue when combining data from different sources consists in estab-
lishing a match between the identifiers for the same biological entities. This hap-
pens because each database uses its own nomenclature to classify entries, resulting 
in a multitude of identifiers for the same entity. For instance, the gene BRCA2 
has, among others, the following identifiers: hsa:675 for the KEGG [5] database; 
675 for the Entrez Gene [6] database; ENSG00000139618 for the Ensembl [7]  
database; and P51587 for the associated protein in UniProt [8] database. 

In spite of the recent notorious effort from major databases to establish associa-
tions between their identifiers, the resulting cross-database mapping is still far 
from perfect due to the low number of matches and included databases. This low 
or absent coverage creates major obstacles as some biological entities are dis-
carded in cross-mappings and, as such, possible meaningful biological results may 
be overlooked. As a possible example, consider the analysis of the distribution of 
a set of Ensembl genes to KEGG Pathways. Since such an analysis would require 
an initial mapping from Ensembl to KEGG identifiers, it is possible to miss some 
genes and therefore, pathway associations. 

In this paper, we propose a simple yet effective methodology to improve the 
coverage of cross-database mapping. We applied this approach to the identifiers of 
the four most relevant databases: Ensembl, Entrez Gene, KEGG and UniProt. As a 
back-end resource we use GeNS (Genomic Name Server) [9] which consists of a 
extendable platform for the storage of biological identifiers. 

2   Related Work 

According to the last release of the Nucleic Acids Research Molecular Biology 
Database Collection there are about 1000 databases in the field of molecular biol-
ogy [3]. Each database corresponds to the output of a specific study or community 
and represents a huge investment whose potential has not been fully explored. 

Being able to integrate multiple sources is important because data about one 
biological entity may be dispersed over several databases. For instance, for a gene, 
the nucleotide sequence is stored in GenBank , the protein structure on PDB (Pro-
tein DataBank), the pathway in KEGG Pathway  and the expression data in  
ArrayExpress. Obtaining a unified view of these data is therefore crucial to  
understanding the role of the gene. 

Much of the work necessary to obtain this “unified view” consists in establish-
ing relationships between the identifiers of each database. This identifiers map-
ping is already provided by several public databases including KEGG LinkDB and 
the UniProt ID Mapping, however, they lack global completeness and reliability. 
One example of such is KEGG and Ensembl that provide gene information and 
are supposed to cross-reference each other. Other problem consists in the necessity 
to navigate across several databases to find a relationship between two databases. 
Those problems are illustrated in Figure 1. For each identifier a graph can be built 
with the existing relationships in each specific database. For instance, in the data-
base Ensembl the gene “keratin associated protein 5-6” with the identifier 
ENSG00000205864 does not have a direct link to the database KEGG, despite the 
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fact that KEGG has a link to Ensembl. The link from Ensembl to KEGG can also 
be inferred with the intermediate databases HGNC and UniProt. 

To address this issue, several efforts to establish unified maps of the various da-
tabases have been proposed [10-14] including Onto-Translate [15], IDconverter 
[16] and MatchMiner [17]. 

 

Fig. 1 Example of the lack of completeness in the network of associations between  
databases 

Onto-Translate integrates 17 annotation databases and enables many-to-many 
conversion between stored identifiers. Given a source identifier and a target identi-
fier type, the implemented algorithm obtains a target identifier based on a best 
match determined via the database trustworthiness. Despite the comprehensive list 
of included identifiers, it does not include Ensembl, Pubmed and Reactome  
Pathways identifiers, for example. 

IDconverter is another tool that, with a simple query, allows mapping multiple 
identifiers into multiple outputs. Although the list of connected databases is broad, 
major limitations are found in the input list because it only accepts gene/protein 
identifiers. Therefore, if the user has a list of OMIM or pathway identifiers this 
tool cannot be used. Another limitation is its low number of covered species  
(Human, Mouse and Rat). 

Similarly to IDconverter, the MatchMiner annotation tool is restricted to genes 
as input identifiers. Moreover, this tool’s output is even more restricted as it does 
not include relationships to the Gene Ontology, KEGG and PFAM databases, to 
name just a few. It is also limited to the Human species. 

3   Implementation 

Based on the previous considerations, we propose a methodology to improve the 
issue of cross-database mapping. As a starting point, we use the GeNS [9], a local 
database that contains the most relevant biological resources, including UniProt, 
Entrez Gene, KEGG, Ensembl and Gene Ontology (Figure 2). By merging these 
data, we have obtained approximately one thousand species, with over 7 million 
gene products, 70 million alternative gene/protein identifiers and 70 million asso-
ciations to 140 distinct biological entities.  For instance, the species Saccharomyces 



72 J. Arrais et al.
 

Cerevisiae has 7421 gene products with 105.000 alternative identifiers and associa-
tions with 213.000 biological entities such as pathways, Gene Ontology terms or 
homologs. 

GeNS presents a set of characteristics that turn it a good case study for our 
goal: firstly, despite being focused on storing biological identifiers, it also contains 
data commonly stored in warehouses such as BioWarehouse [18]; secondly, it in-
tegrates a large number of databases where the lack of full cross-reference is evi-
dent, and thirdly, it has a generic database schema that allows effortless addition 
of new databases and relations (hence, without the need to change the current 
schema). This generic schema also allows the implementation of a generic inter-
face for searching, retrieving and inserting elements, thus enabling easy  
implementation of recursive algorithms such as the one used in the proposed 
methodology. 

 

 

Fig. 2 Biological entities and identifiers stored in GeNS database 

Considering each database as a node and each database reference as a connec-
tion, we have created, for each entry, a digraph that represents real linkage across 
databases. To be able to map between the identifier ID1 in database DB1 to ID2 in 
DB2, one needs to know if there is a direct connection between them. The  
algorithm acts as follows: 

• Firstly, it verifies the existence of a direct connection from (ID1, DB1) to 
(ID2, DB2). If it exists, the algorithm terminates successfully; if not, it 
proceeds to the second step; 

• Secondly, the algorithm will test the existence of a connection from (ID2, 
DB2) to (ID1, DB1). If this connection exists, the algorithm will create a 
reverse connection and terminate successfully; if not, it will proceed to 
step three; 
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• Thirdly, it will repeat the procedure iterating through the nodes directly 
connected with DB1. When a node that connects to (ID2, DB2) is found, 
the algorithm adds a new direct connection from (ID1, DB1) to (ID2, 
DB2) and terminates. 

The algorithm’s pseudocode is detailed next – where node is a pair (identifier, da-
tabase). It is self-explanatory and its inner functions should implement all the  
non-described operations. 
 

Function mapping(node1, node2) 
 If node1.hasConnectionTo(node2) 
  Return true  
 
 If node2.hasConnectionTo(node1) 
  node1.createConnection(node2) 
  Return true 
 

For each node in node1.connectionList 
 If mapping(node, node2) then 
  node1.createConnection(node2) 
  Return true 

  
 Return false 

4   Analysis of the Coverage Improvements 

To analyse the presented methodology we have selected the identifiers from four 
databases: UniProt Acession, KEGG, Ensembl and Entrez Gene. Altogether, these 
four databases store links to more than one hundred distinct external databases 
and, therefore, by improving the coverage between these four identifiers, one is 
able to extend his search to all the associated ones. We have also restricted this 
analysis to one organism (Homo sapiens) in order to make this example as simple 
as possible. 

The initial step consisted of measuring the coverage value of each database. By 
this we mean the percentage of entries in the origin database that have direct cor-
respondence in the target database. Table 1 shows the coverage results, for any 
possible connection, before and after executing the algorithm. Overall, a signifi-
cant improvement in the coverage has been obtained in every relationship; Entrez 
Gene data showed the greater increase essentially due to its low initial coverage: 
the links from Entrez Gene to UniProt noticed a positive difference of 10,4%, 
while those to Ensembl increased by 10,2% and to KEGG by 8,0%. Other relevant 
improvements were registered in the Ensembl to KEGG relationship (38,9%) and 
in the UniProt to Entrez Gene relationship (7,4%). 

We have also compared the results with three tools for database mapping: 
Onto-Translate, IDConverter and MatchMiner. As input list we used Entrez Gene 
identifiers annotations for the Affymetrix GeneChip® Human Genome U133 Plus 
2.0 Array (19 151 unique identifiers). The graph in Figure 3 shows the coverage of 
each tool, for each translation. We notice that GeNS obtained an overall high  
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coverage with a minimum value of 89,9% for the Ensembl identifiers. However, 
this value is still higher than the one from IDConverter (81,9%), while Onto-
Translate and MatchMiner do not allow translating to Ensembl identifers. The  
major difference found on IDConverter while translating to UniProt (69,7%) is 
because it only maps to SwissProt. Apart from that, all tools present very high and 
uniform results. 

Table 1 Comparison of the average coverage values with and without the use of the cross-
reference algorithm. For each relationship between two databases the coverage values  
before and after the algorithm are shown 
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Fig. 3 Coverage comparison for the GENS, Onto-Translate, IDConverter and MatchMiner. 
The input file consists of 19 151 genes (Entrez gene identifiers) obtained from the Affy-
metrix GeneChip® Human Genome U133 Plus 2.0 Array. The graph shows the percentage 
of genes with at least one match for each output format. The empty bars correspond to 
translations not provided 
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5   Usage Example 

Taking into consideration the previous mentioned example, a user is trying to de-
termine the KEGG identifier for the human protein Keratin-associated protein 5-6 
using the Ensembl identifier ENSG00000205864 as a starting point. Before run-
ning the algorithm on the database, no direct match could have been established 
between these two identifiers; nevertheless, we can now obtain matches between 
Ensembl and KEGG identifiers. This was achieved because, as seen in Figure 1, 
the HGNC and UniProt accession Q6L8G9 can be used to establish a direct link 
between the two.  

GeNS database provides a set of public web services that allow external appli-
cations and users to better exploit its concepts, associations and sources1. One of 
these methods, ConvertIdentifier, enables real-time identifier conversion and can 
be used to retrieve identifier associations. As such, the previous example can be 
replicated through this API using a common web browser. In this case one must 
run ConvertIdentifier with the parameters (9606, KRTAP5-6, 27, 9), where “9606” 
refers to the taxonomic identifier of the Homo sapiens species, “27” to an internal 
data-type identifier that states the source of that input as belonging to Ensembl 
and “9” to specify the output format of the identifier as a KEGG ID. These IDs 
can be easily obtained from other web services. Finally, GeNS would then return 
“hsa:440023” in XML format, thus bridging the gap between these distinct  
identifiers in the original databases. 

6   Conclusion 

In this paper, we have presented a methodology to improve the coverage of cross 
database mapping. Such a methodology is relevant due to the low coverage  
between certain types of identifiers which, in turn, can result in some biological 
entities being discarded in cross-mappings, thus possibly ignoring meaningful bio-
logical results. This methodology has been implemented over the GeNS database 
that already stores identifiers for the most relevant biological databases in order to 
further increase its coverage. 

We have shown the gain of the methodology with two distinct analyses. In the 
first one, we compare the improvement to the coverage with the default links pro-
vided by the used databases; we have attained an improvement in all relations be-
ing superior to 10% in three and to 7% in five relations. This is relevant because 
eight of the initial values were already superior to 75%. In the second analysis, we 
compare the database mapping against three of the most used mapping tools with 
a gene list from the Affymetrix U133 Plus 2.0 array. In this case we also attained 
significant improvements, especially when converting to UniProt and Ensembl 
identifiers.  

                                                           
1 http://bioinformatics.ua.pt/applications/gens/ 
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An Efficient Multi-class Support Vector
Machine Classifier for Protein Fold Recognition

Wiesław Chmielnicki, Katarzyna Sta̧por, and Irena Roterman-Konieczna

Abstract. Predicting the three-dimensional (3D) structure of a protein is a key prob-
lem in molecular biology. It is also interesting issue for statistical methods recogni-
tion. In this paper a multi-class Support Vector Machine (SVM) classifier is used on
a real world data set. The SVM is a binary classifier and how to effectively extend
a binary to the multi-class classifier case is still an on-going research problem. The
new efficient approach is proposed in this paper. The obtained results are promising
and reveal areas for possible further work.

1 Introduction

Predicting the three-dimensional (3D) structure of a protein is a key problem in
molecular biology. Proteins manifest their function through these structures so it is
very important to know not only sequence of amino acids in a protein molecule, but
also how this sequence is folded.

There are several machine-learning methods to detect the protein folds from
amino acids sequences proposed in literature. Ding and Dubchak [5] experiments
with Support Vector Machine (SVM) and Neural Network (NN). Shen and Chou
[17] proposed ensemble model based on nearest neighbour. A modified nearest
neighbour algorithm called K-local hyperplane (HKNN) was used by Okun [16].
Nanni [15] proposed Ensemble of classifiers: Fishers linear classifier and HKNN
classifier.
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This paper focuses on the SVM classifiers. The SVM technique has been used
in different application domains and has outperformed the traditional techniques in
erms of generalization capability. However, the SVM is a binary classifier but the
protein fold recognition is a multi-class problem and how to effectively extend a
binary to the multi-class classifier case is still an on-going research problem. There
are many methods proposed to deal with this issue. The most popular is to construct
a multi-class classifier by combining binary classifiers.

The number of classes in protein fold problem can be as high as 1000, so some
of these strategies might not be applicable according to the number of two-way
classifiers needed. In this paper the new strategy is presented, which minimizes
the number of two-way classifiers. The results using this method are promising
especially for the problems with large number of classes.

The rest of this paper is organized as follows: Section 2 introduces the database
and the feature vectors used is these experiments, Section 3 shortly describes basics
of SVM classifier, Section 4 deals with different ways of solving of multi-class
problem, Section 5 describes the proposed approach to multi-class classifier and
Section 6 present experimental results and conclusions.

2 The Database and the Feature Vectors

In experiments described in this paper two data sets derived from SCOP (Structural
Classification of Proteins) database are used. The detailed description of these sets
can be found in Ding and Dubchak [5]. The training set consists of 313 protein
sequences and the testing set consists of 385 protein sequences. These data sets in-
clude proteins from 27 most populated different classes (protein folds) representing
all major structural classes: α , β , α/β and α + β . The training set was based on
PDB select sets (Hobohm and Sander [9]) where two proteins have no more than
35% of the sequence identity. The testing set was based on PDB-40D set developed
by Lo Conte et al. [13] from which representatives of the same 27 largest folds are
selected. The proteins that had higher than 35% identity with the proteins of the
training set are removed from the testing set.

In this paper the feature vectors developed by Ding and Dubchak [5] were used.
These feature vectors are based on six parameters: Amino acids composition (C),
predicted secondary structure (S), Hydrophobity (H), Normalized van der Waals
volume (V), Polarity (P) and Polarizability (Z). Each parameter corresponds to 21
features except Amino acids composition (C), which corresponds to 20 features.
The data sets including these feature vectors are available at http://ranger.
uta.edu/˜chqding/protein/. For more concrete details, see Dubchak et al.
[6]. In this study the sequence length was added to the Amino acids composition
(C) vector and the feature vectors based on these parameters were used in different
combinations creating vectors from 21D to 126D.
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3 The SVM Classifier

The Support Vector Machine (SVM) is a well known large margin classifier pro-
posed by Vapnik [18]. The basic concept behind the SVM classifier is to search an
optimal separating hyperplane, which separates two classes. The perfect separation
is not often feasible, so slack variables ξi can be used which measure the degree of
misclassification. Let us consider a classifier whose decision function is given by:

f (x) = sign(xT w+ b) , (1)

where x denotes a feature vector and w is a weight vector. Then the SVM algorithm
minimizes the objective function:

1
2
‖w‖2

2 +C
n

∑
i=1

ξi , (2)

subject to: yi(wxi + b)≥ 1− ξi, ξi > 0, i = 1,2, . . . ,n.
This problem leads to so called dual optimization problem and finally

(considering non-linear decision hyperplane and using the kernel trick) to:

f (x) = sign
( N

∑
i=1

αiyiK(xi,x)+ b
)

, (3)

where 0 ≤ αi ≤C, i = 1,2, . . . ,N are nonnegative Lagrange multipliers, C is a cost
parameter, that controls the trade off between allowing training errors and forcing
rigid margins, xi are the support vectors and K(xi,x) is the kernel function.

4 A Multi-class SVM

The SVM is a binary classifier, but protein fold recognition is a multi-class prob-
lem. Generally, there are two types of approaches to this problem but one of them
is considering all classes in one optimization (Lee et al. [12]). In such a case a QP
(quadratic problem) with (n−1)k variables, where n is the number of classes, must
be solved, while using binary SVM there is the QP with k variables. Wang and Shen
[20] proposed a L1-norm MSVM (Multi category SVM), which performs classifica-
tion and feature selection simultaneously. This algorithm is more effective but still
when the number of classes increases this approach can be computationally very
expensive.

The second approach is to cover one n-class problem into several binary prob-
lems. There are many methods proposed in literature, such as one-versus-others,
one-versus-one strategies, DAG (Directed Acyclic Graph), ADAG (Adaptive Di-
rected Acyclic Graph) methods (Kijsirikul et al. [11]), BDT (Binary Decision
Tree) approach (Fei and Liu [7]), DB2 method (Vural and Dy [19]), pairwise cou-
pling (Hasti and Tibshirani [8]) or error-correcting output codes (Dietterich and
Bakiri [4]).
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4.1 One-versus-One Method

One of the first and well-known methods is one-versus-one method with max-win
voting strategy. In this method the two-way classifiers are trained between all pos-
sible pairs of classes and there are N ∗ (N − 1)/2 of them. All proteins are tested
against these classifiers and then each classifier votes for a preferred class. The
protein with maximum number of votes is classified as the correct class.

The number of two-way classifiers in this method is N ∗ (N − 1)/2. In these
experiments there are 27 classes used, so the number of two-way classifiers is
27 ∗ (27− 1)/2 = 351. However, the total number of protein folds is estimated as
many as 1000, so the number of classifiers would be 1000∗(1000−1)/2= 499500.
The recognition process using about half a million two-way classifiers would be
entirely inefficient.

4.2 Binary Decision Tree Method

This method limits the number of two-way classifiers, so it is more suitable for
problems in which the number of classes is large. The classifiers are arranged in a
binary tree structure, each SVM in each node is trained using two sets of classes
and in the root node all classes are divided into two sets. The number of classes in
each set is equal (when the total number of classes is even) or almost equal (when
the total number or classes is odd). Then this procedure is repeated recursively until
all sets contain one class only.

The number of classifiers used in this architecture is N−1, however these N−1
classifiers are needed to be trained, but at most �log2N� are required to classify a
sample. When the 1000 class problem is considered there must be 999 classifiers
trained but only 10 are used to classify each sample, compared with the 499500 in
one-versus-one method.

The main problem in this method is how to divide classes into subsets and there
are several approaches in literature. For example Madzarov et al. [14] propose a
kind of similarity measure based on gravity centres of the classes. Jinbai et al. [10]
divide randomly the classes, but they used a strategy for error correcting after each
classification.

A similar strategy was presented by Vural and Dy [19]. This method, called DB2
(Divide-by-2), hierarchically divides the data into two subsets until every subset
consists of one class only. They considered the division step as a clustering problem
and proposed three methods of solving it. One method is to use k-means clustering,
the second is to use class mean distances from origin and the third is to use balanced
subsets (such subsets that the difference of the samples in each subset is minimum).

5 The Modified Approach to Multi-class Classifier

Let us consider two binary classifiers. For example: one dividing classes into 1,2,4
and 3,5,6,7 subsets and second dividing classes into 2,4,5 and 1,3,6,7 subsets.
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It is seen that the intersection of these two classifiers can be used to obtain four
subsets: 2,4 – 3,6,7 – 1 – 5. See fig. 1 (left). This procedure can be recursively used
for subsets containing more than one class until all classes are recognized. See fig. 1
(right). The number of classifiers used in this architecture is N−1 in training stage
but at most �log2N� are required to classify a sample. However some samples are
classified using only two binary classifiers (classes 1 and 5 in our example).

Another approach is to continue the procedure, dividing all classes into two dif-
ferent subsets. We assume that both subsets must consist of equal number of classes
(or almost equal if the total number of classes is odd). After using two more bi-
nary classifiers all classes can be recognized using described intersection scheme.
See fig. 2. The number of two-way classifiers used in this strategy is (N + 1) / 2,
so it is very useful for applications with a large number of classes. The difference
between this strategy and recursive strategy is visible when the number of binary
classifiers to recognize all samples is considered. Using recursive strategy N−1 bi-
nary classifiers are needed compared to (N +1)/2 when half-versus-half strategy is
used.

Unfortunately the recognition rates obtained using described methods are not
satisfactory. They are even lower than using one-versus-one method. However, they
can be enhanced using different partitions (and corresponding different binary clas-
sifiers) with the voting scheme. The multi-class classifier using a set of partitions
votes for the preferred classes and then the next multi-class classifier using a differ-
ent set of partitions is used. Finally the samples with maximum number of votes are
assigned to the correct classes.

The results of using this strategy are presented in table 1. There are presented
results obtained using the classifier with the recursive procedure and the classifier
with half-versus-half strategy. Every classifier was tested without the voting scheme
and with the voting scheme using 20, 40 and 60 randomly chosen partitions.

Using different sets of partitions and the voting scheme the recognition rate can
be improved but however at the cost of efficiency. Despite this drawback the pro-
posed method allows to control the number of binary classifiers needed to classify
the samples.

Fig. 1 Intersection method using recursive strategy



82 W. Chmielnicki, K. Sta̧por, and I. Roterman-Konieczna

Fig. 2 Intersection method using recursive strategy

Table 1 Results using proposed method

No voting Voting scheme Voting scheme Voting scheme
scheme using 20 sets using 40 sets using 60 sets

Recognition rate using
recursive procedure 48.1% 53.5% 56.1% 57.1%
Recognition rate using
half-versus-half strategy 50.1% 53.2% 56.4% 57.7%

The well-known LIBSVM library version 2.89 was used in our research (Chang
and Lin [2]). Although the implementation of this library includes one-versus-one
strategy for the multi category problems only the binary version of the classifier was
used. LIBSVM provides a choice of build-in kernels i.e. Linear, Polynomial. Radial
Basis Function (RBF) and Gausian. The RBF kernel:

K(xi,x) =−γ‖x− xi‖2,γ > 0 , (4)

gave the best results in our experiments.
The parameters C and γ must be chosen to use the SVM classifier with RBF

kernel. It is not known beforehand which C and γ are the best for one problem. Both
values must be experimentally chosen, which was done by using cross-validation
procedure on the training data set. The best recognition ratio was achieved using
parameters values γ = 0.1 and C = 128.

6 Results

In this paper there is a new method presented to deal with the multi-class SVM.
The proposed classifier was used to solve a protein fold recognition problem. This
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approach minimizes the number of binary classifiers used, so it is very useful with
problems where the total number of classes is big. The achieved recognition ratio
is worse than the result achieved using one-versus-one method but however there
is a strategy proposed to increase recognition efficiency. The best result (57.7%) is
achieved using intersection method with half-versus-half strategy and voting scheme
using 60 different subsets.

The accuracy measure used in this paper is the standard Q percentage accuracy
(Baldi et al., [1]). Suppose there is N = n1 + n2 + . . . + np test proteins, where ni

is the number of proteins which belongs to the class i. Suppose that ci of proteins
from ni are correctly recognised (as belonging to the class i). So the total number of
C = c1 + c2 + . . .+ cp proteins is correctly recognized. Therefore the total accuracy
is Q = C/N.

Table 2 Comparison among different methods

Method Recognition ratio
SVM [5] 56.0%
HKNN [16] 57.4%
RS1 HKNN K25 [15] 60.3%
MLP [5] 48.8%
This paper 48.1% – 57.7%

In this paper there is no strategy proposed to choose a set of partitions of the
classes. The total number of possible partitions is: N!/(N−�N/2�)!�N/2� and not
every partition is good. Some of then are even harmful dividing samples of the same
class to both subsets. See fig. 2 (class 3). In these experiments the partitions were
randomly chosen, but for example the partitions with the best recognition rate on
the training dataset can be selected.

The results achieved using the proposed strategies are promising. The recogni-
tion rates obtained using these algorithms (48,1% - 57,7%) are comparable to those
described in literature (48.8% - 60.3%). The described intersection method provides
superior multi-class classification performance. The results show that this method
offer comparable recognition rates with improved speed of training and especially
in the testing phase but however some extra experiments are needed to match up to
other methods.
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Feature Selection Using Multi-Objective 
Evolutionary Algorithms: Application to 
Cardiac SPECT Diagnosis 

António Gaspar-Cunha 

1 

Abstract. An optimization methodology based on the use of Multi-Objective Evo-
lutionary Algorithms (MOEA) in order to deal with problems of feature selection 
in data mining was proposed. For that purpose a Support Vector Machines (SVM) 
classifier was adopted. The aim being to select the best features and optimize the 
classifier parameters simultaneously while minimizing the number of features 
necessary and maximize the accuracy of the classifier and/or minimize the errors 
obtained. The validity of the methodology proposed was tested in a problem of 
cardiac Single Proton Emission Computed Tomography (SPECT). The results ob-
tained allow one to conclude that MOEA is an efficient feature selection approach 
and the best results were obtained when the accuracy, the errors and the classifiers 
parameters are optimized simultaneously. 

1   Introduction 

Feature selection is of crucial importance when dealing with problems with high 
amount of data. This importance can be due to various reasons: i) the processing 
of all features available can be computational infeasible; ii) the existence of high 
number of variables for small number of available data points can invalidate the 
resolution of the problem; iii) an high number of features can be redundant or ir-
relevant for the classification problem under study. Therefore, taking into account 
the large number of variables usually present, and the frequent correlation between 
these variables, the existence of a feature selection method able to reduce the 
number of features considered for analysis is of essential importance [1]. 

Multi Objective Evolutionary Algorithms (MOEA) is a valid and efficient 
method to deal with this problem. Recently, some works using this approach have 
been proposed. A framework for SVM based on multi-objective optimization with 
the aim of minimizes the risk of the classifier and the model capacity (or accuracy) 
was proposed by Bi [2]. An identical approach was followed by Igel [3], but now 
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the objective concerning the minimization of the risk was replaced by the minimi-
zation of the complexity of the model (i.e., the number of features). Oliveira et al. 
in [4] used an hierarchical MOEA operating at two levels: performing a feature se-
lection to generate a set of classifiers (based on artificial neural networks) and se-
lecting the best set of classifiers. Hamdani et al. in [5] optimized simultaneously 
the number of features and the global error obtained by a neural network classifier 
using the NSGA-II algorithm [6]. Both errors of type I (false positive) and type II 
(false negative) were taking into account individually through the application of a 
MOEA by Alfaro-Cid et al. [7]. MOEA were also applied in unsupervised learn-
ing. Handl and Knowles studied the problem of feature selection by formulating 
them as a multi-objective optimization problem [8]. 

The main ideas of a previous work proposed by the author were take into ac-
count [9]. It consisted in using a MOEA to accomplish simultaneously two objec-
tives: the minimization of the number of features used and the maximization of the 
accuracy of the classifier used [9]. This is an important issue since parameter tun-
ing is not an easy task [10]. In this work these ideas were extended to deal with the 
issue of selecting the best accuracy measures [11-13]. Thus, different accuracy 
measures, such as maximization of the Fmeasure and the minimization of errors 
(type I and type II) will be tested. Also, an analysis based on ROC curves will be 
carried out [13]. Simultaneously, the parameters required by the classifier will be 
optimized. The motivation for doing this work is the development of a methodol-
ogy able to deal with bigger problems like gene expression data. However, before 
applying the methodology to difficult problems the methodology must be tested in 
small and controllable problems. 

This text is organized as follows. The MOEA used will be presented and de-
scribed in detail in section 2. In section 3 the classification methods employed and 
the main accuracy measures employed will be presented and described. The meth-
odology proposed will be applied to a case study and the results will be presented 
and discussed in section 4. Finally, the conclusion will be drawn in section 5. 

2   Multi-Objective Evolutionary Algorithms 

Due to the complexity in dealing with multiple conflicting objectives problems, 
MOEAs have been recognized in the last two decades as good methods to explore 
and find an approximation to the Pareto-optimal front. This is due to the difficulty 
of traditional exact methods to solve this type of problems and by their capacity to 
explore and combine various solutions to find the Pareto front in a single run. The 
Pareto front is constituted by the non-dominated solutions, i.e., the solutions that 
are not better neither worst than the others. Thus, a MOEA must be able to ac-
complish simultaneously two objectives, a homogeneous distribution of the popu-
lation along the Pareto frontier in the objective domain and an improvement of the 
solutions along successive generations [6, 14]. The Reduced Pareto Set Genetic 
Algorithm with elitism (RPSGAe) is adopted here [14, 15]. This algorithm is 
based on the use of a clustering technique to reduce the number of solutions on the 
efficient frontier, which enabled simultaneously the distribution of the solutions 
along the entire Pareto front and the choice of the best solutions for reproduction. 
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Thus, both the exploration and exploitation of the search space are simultaneously 
taking into account. Detailed information about this algorithm can be found  
elsewhere [14, 15]. 

3   Classification Methods 

The methodology proposed here consists in using a MOEA to determine the best 
compromise between the two and/or the three conflicting objectives. For that pur-
pose Support Vector Machines (SVM) will be used to evaluate (or classify) the 
trial solutions proposed by the MOEA during the successive generations. Support 
Vector Machines (SVMs) are a set of supervised learning methods based on the 
use of a kernel, which can be applied to classification and regression. In the SVM 
a hyper-plane or set of hyper-planes is (are) constructed in a high-dimensional 
space. In this case, a good separation is achieved by the hyper-plane that has the 
largest distance to the nearest training data points of any class. Thus, the generali-
zation error of the classifier is lower when this margin is larger. SVMs can be seen 
an extension to nonlinear models of the generalized portrait algorithm developed 
by Vapnik in [16]. In this work the SVM from LIBSVM was used [17]. 

The SVM performance depends strongly on the selection of the right kernel, as 
well the definition of the best kernel parameters [3]. In the present study only the 
C-SVC method using as kernel the Radial Basis Function (RBF) was tested [17]. 
Thus, two different SVM parameters are to be selected carefully: the regulariza-
tion parameter (C) and the kernel parameter (γ). Another important parameter is 
the training method. Two different approaches were used for training the SVM, 
holdout and 10-fold validation. Thus two additional parameters were studied: the 
Learning Rate (LR) and the Training Fraction (TF). The choice of a performance 
metric to evaluate the learning methods is nowadays an important issue that must 
be carefully defined [11-13]. Some recent studies demonstrate that the use of a 
single measure can introduce an error on the classifier evaluation, since two type 
of objectives must be accomplished simultaneously, maximization of the classifier 
accurateness and minimization of the errors obtained [13]. The selection of the 
best learning algorithm to use and the best performance metric to measure the ef-
ficiency of the classifier is nowadays the subject of many studies [11, 13]. 

The simplest way evaluate a classifier is the use the accuracy given by the ratio 
between the number instances correctly evaluated and the total number of in-
stances, i.e., Accuracy = (TP + TN) /(TP + TN + FP + FN), where, TP are the posi-
tives correctly classified, TN are the negatives correctly classified, FP are the  
positives incorrectly classified and FN are the negative incorrectly classified. It is 
also important to know the level of the errors accomplished by the classifier. Two 
different error types can be defined, type I and type II, given respectively by: eI = 
FP/(FP + TN) and eII = FN/(FN + TP). Another traditional way to evaluate the in-
formation is using the sensitivity or recall (R) and the precision (P) of the classi-
fier: R = TP/(TP + FN) and P = TP/(TP + FN). Fmeasure, representing the harmonic 
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mean of R and P, is a global measure often used to evaluate the classifier: Fmeasure 
= (2.P.R)/(P + R). In order to take into account the problem of simultaneously 
maximize the classifier accurateness and minimize the errors obtained, ROC 
curves can be adopted instead [12, 13]. On a ROC graph the False Positive rate 
(FPrate) is plotted in the X axis and the True Positive rate (TPrate) is plotted on the 
Y axis. Thus, defining a bi-dimensional Pareto frontier where the aim is to ap-
proach the left top corns of this graph [12, 13]. The FPrate is given by the error of 
type I (eI) and the TPrate is given by the recall (R). 

4   Results and Discussion 

The MOEA methodology proposed will be used in a diagnostic problem of cardiac 
Single Proton Emission Computed Tomography (SPECT) images [18].  Each of 
the patients is classified into two categories: normal and abnormal. The database 
of 267 SPECT image sets (patients) was processed to extract features that summa-
rize the original SPECT images.  As a result, 44 continuous feature patterns were 
created for each patient. The pattern was further processed to obtain 22 binary fea-
ture patterns. The aim was finding the minimum number of features while maxi-
mizing the accuracy and/or the Fmeasure and minimizing the errors. The database 
was downloaded from the UCI Machine Learning Repository [19]. 

Table 1 shows the different experiments tested. Concerning the definition of the 
decision variables, two possibilities were considered. Initially, a pure feature se-
lection problem was analyzed. In this case the parameters of the classifier, such as 
type of training and learning rate, the SVM parameters (C and γ) and the training 
fraction of holdout validation, were initially set. In a second approach, these pa-
rameters were also included as variables to be optimized. The range of variation 
allowed for these variables is shown on Table 1. The RPSGAe was applied using 
the following parameters: 100 generations, crossover rate of 0.8, mutation rate of 
0.05, internal and external populations with 100 individuals, limits of the cluster-
ing algorithm set at 0.2 and the number of ranks (NRanks) at 30. These values re-
sulted from a carefully analysis made previously [14, 15]. Due to the stochastic 
nature of the initial tentative solutions several runs have to be performed (in the 
present case 10 runs) for each experiment. Thus, a statistical method based on at-
tainment functions was applied to compare the final population for all runs [20, 
21]. This method attributes to each objective vector a probability that this point is 
attaining in one single run [20]. It is not possible to compute the true attainment 
function, but it can be estimated based upon approximation set samples, i.e., dif-
ferent approximations obtained in different runs, which is denoted as Empirical 
Attainment Function (EAF) [21]. The differences between two algorithms can be 
visualized by plotting the points in the objective space where the differences be-
tween the empirical attainment functions of the two algorithms are significant 
[22]. 
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Table 1 Experiments 

Exp. γ C TM LR TF Objectives 
H01 10 1 K(10) 0.01 * NA + PA 
H02 10 1 K(10) 0.01 * NA + eI  
H03 10 1 K(10) 0.01 * NA + eII  
H04 10 1 K(10) 0.01 * NA + Fm 
H05 10 1 K(10) 0.01 * NA + eI + Fm 
H06 [0.01,10] [1,150] K(10) [0.001,0.1] * NA + Fm 
H07 [0.01,10] [1,150] K(10) [0.001,0.1] * NA + eI + Fm 
H08 10 1 H 0.01 0.7 NA + Fm 
H09 [0.01,10] [1,150] H [0.001,0.1] [0.2,0.9] NA + Fm 
H10 [0.01,10] [1,150] H [0.001,0.1] [0.2,0.9] NA + eI + Fm 
H11 10 1 K(10) 0.01 * NA + eI + R 
H12 [0.01,10] [1,150] K(10) [0.001,0.1] * NA + eI + R 
H13 [0.01,10] [1,150] K(10) [0.001,0.1] * NA + eI + R + Fm 

* Not applicable. 

 
Figure 1 shows the initial population and the Pareto front after 100 generations 

for the first run of Experiments H01 and H02 (Table 1). Identical results were ob-
tained for the remaining runs. As can be observed there is a clear improvement of 
the solutions proposed during the search process. The algorithm was able to evolve 
to good values of the Accuracy (graph at the left) using a few features. In fact only 
six or seven features are needed to reach more than 90% of accuracy. Concerning 
the experiments were the eI was minimized simultaneously with the number of fea-
tures (H02) identical improvements can be noticed. More results can be found at 
http://www.dep.uminho.pt/agc/agc/Supplementary_Information_Page.html. 

The results for the first run of experiment 5 were plotted in Figure 2. In this 
case a 3-dimensional Pareto front was obtained and some of the points that seem 
to be dominated in one of the graphs (in each 2D plots) are in reality non-
dominated due to the third objective considered in the optimization run. These 
plots are very similar to those obtained for experiments H01 and H02, but now the 
solutions resulted from a compromise between the 3 objectives considered simul-
taneously. Thus, more features are needed to satisfy simultaneously the maximiza-
tion of Fmeasue and the minimization of eI. These plots allow us to observe the 
shape of the curves and to get some information about the relation between the ob-
jectives. This information is important in the sense that will help the decision 
maker selecting the best solution satisfying their requirements. 

The EAFs functions were used to compare experiments H04, H06, H08 and 
H09 (due to a lack of space these results were presented in the supplementary in-
formation page identified above). This analysis allowed concluding that the best 
performance is obtained with the k-fold validation method when the classifier pa-
rameters are optimized simultaneously (experiment H06). Finally, the advantages 
of using the proposed methodology for dealing with this type of problems, is 
shown in Figure 3 (Pareto fronts for experiment H13). In this figure is possible to 
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Fig. 1 Pareto fronts after 100 generations for runs H01 and H02 of table 1 
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Fig. 2 Three-dimensional Pareto fronts after 100 generations for run H05 
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Fig. 3 Pareto fronts for experiment H13 (at left is possible to observe the solutions  
generated in the ROC curve domain) 

observe that the algorithm is able to converge to very good solutions since high 
values for TPrate were obtained simultaneously with low values for FPrate. This in-
dicates that the application of a MOEA, where the features to be selected and the 
parameters of the SVM are optimized simultaneously, is a method with good po-
tentialities for solving this type of problems. The solutions identified in this plots 
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are presented in Table 2. These include the decision variables (features selected, 
and classifier parameters) and the objective values. Identical results were obtained 
for runs H11 and H12.  

Table 2 Best solutions for the first run of experiment H13 and identified in Figure 3 

Decision Variables Objectives 
Sol. 

Features selected γ C LR NF FPrate TPrate Fm 
1 F3,F4,F11,F13,F14,F16,F18,F22 0.078 0.17 62.7 8 0.013 0.91 0.951 

2 F4, F11 0.040 0.43 78.7 2 0.975 1.00 0.886 

3 F11, F13 0.043 0.46 81.7 2 0.818 0.97 0.892 

5   Conclusions 

In this work a MOEA was used for feature selection in data mining problems us-
ing a Support Vector Machines classifier. The methodology proposed was able not 
only to propose solutions with a few number of features necessary but is able also 
to provide relevant information to the decision maker, such as the best features to 
be used but, the best parameters of the classifier and the trade-off between the  
different objectives used. Finally, the approach followed here showed good  
potentialities in obtaining a good approximation to the ROC curves. 
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Two Results on Distances for Phylogenetic
Networks

Gabriel Cardona, Mercè Llabrés, and Francesc Rosselló

Abstract. We establish two new results on distances for phylogenetic networks.
First, that Nakhleh’s metric for reduced networks [15] is a metric on the class of
semibinary tree-sibling networks, being thus the only non-trivial metric computable
in polynomial-time available so far on this class. And second, that a simple general-
ization of the nodal distance from binary phylogenetic trees to binary phylogenetic
networks has the same separation power as the one given in [8].

1 Introduction

Phylogenetic networks have been studied over the last years as a richer model of
the evolutionary history of sets of organisms than phylogenetic trees, because they
take into account not only mutation events but also reticulation events, like recom-
binations, hybridizations, and lateral gene transfers. Technically, it is accomplished
by modifying the concept of phylogenetic tree in order to allow the existence of
nodes with in-degree greater than one. As a consequence, much progress has been
made to find practical algorithms for reconstructing a phylogenetic network from a
set of sequences or other types of evolutive information. Since different reconstruc-
tion methods applied to the same sequences, or a single method applied to different
sequences, may yield different phylogenetic networks for a given set of species,
a sound measure to compare phylogenetic networks becomes necessary [13]. The
comparison of phylogenetic networks is also needed in the assessment of phylo-
genetic reconstruction methods [12], and it will be required to perform queries on
future databases of phylogenetic networks [17].

Several distances for the comparison of phylogenetic networks have been pro-
posed so far in the literature, including generalizations to networks of the Robinson-
Foulds distance for trees, like the tripartitions distance [13] and the μ-distance [2, 9],
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and different types of nodal distances [4, 8]. All polynomial time computable dis-
tances for phylogenetic networks introduced up to now do not separate arbitrary
phylogenetic networks, that is, zero distance does not imply in general isomorphism.
Of course, this is consistent with the equivalence between the isomorphism prob-
lems for phylogenetic networks and for graphs, and the general belief that the latter
lies in NP−P. Therefore one has to study for which interesting classes of phylo-
genetic networks these distances are metrics in the precise mathematical sense of
the term. The interest of the classes under study may stem from their biological
significance, or from the existence of reconstruction algorithms.

This work contributes to this line of research in two aspects. On the one hand,
we prove that a distance introduced recently by Nakhleh [15] separates semibinary
tree-sibling phylogenetic networks (roughly speaking, networks where every node
of in-degree greater than one has in-degree exactly two and at least one sibling of
in-degree 1; see the next section for the exact definition, [2] for a discussion of the
biological meaning of this condition, and [11, 16] for reconstruction algorithms).
In this way, this distance turns out to be the only non-trivial metric available so far
on this class of networks that is computable in polynomial-time. On the other hand,
we propose a simple generalization of the nodal, or path-difference, distance for
binary phylogenetic trees to binary phylogenetic networks that turns out to have the
same separation power, up to the current state of knowledge, as the more involved
generalization introduced in [8], but smaller computation time.

2 Preliminaries

Given a set S of labels, a S-DAG is a directed acyclic graph with its leaves bijectively
labelled by S. In a S-DAG, we shall always identify without any further reference
every leaf with its label.

Let N = (V,E) be a S-DAG, with V its set of nodes and E its set of edges. A node
is a leaf if it has out-degree 0 and internal otherwise, a root if it has in-degree 0,
of tree type if its in-degree is ≤ 1, and of hybrid type if its in-degree is > 1. N is
rooted when it has a single root. A node v is a child of another node u (and hence
u is a parent of v) if (u,v) ∈ E . Two nodes with a parent in common are sibling of
each other. A node v is a descendant of a node u when there exists a path from u to
v: we shall also say in this case that u is an ancestor of v. The height h(v) of a node
v is the largest length of a path from v to a leaf.

A phylogenetic network on a set S of taxa is a rooted S-DAG such that no tree
node has out-degree 1 and every hybrid node has out-degree 1. A phylogenetic tree
is a phylogenetic network without hybrid nodes.

The underlying biological motivation for these definitions is that tree nodes
model species (either extant, the leaves, or non-extant, the internal tree nodes), while
hybrid nodes model reticulation events. The parents of a hybrid node represent the
species involved in this event and its single child represents the resulting species
(if it is a tree node) or a new reticulation event where this resulting species gets
involved into without yielding any other descendant (if the child is a hybrid node).
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The tree children of a tree node represent direct descendants through mutation. The
absence of out-degree 1 tree nodes in phylogenetic network means that every non-
extant species has at least two different direct descendants. This is a very common
restriction in any definition of phylogeny, since species with only one child cannot
be reconstructed from biological data.

Many restrictions have been added to this definition. Let us introduce now some
of them. For more information on these restrictions, including their biological or
technical motivation, see the references accompanying them.

• A phylogenetic network is semibinary if every hybrid node has in-degree 2 [2],
and binary if it is semibinary and every internal tree node has out-degree 2.

• A phylogenetic network is tree-child (TC) [9] if every internal node has a child
that is a tree node, and it is tree-sibling (TS) [2, 14] if every hybrid node has a
sibling that is a tree node.

• A phylogenetic network is a galled tree [10] when no node belongs to two differ-
ent reticulation cycles (a reticulation cycle is a pair of paths with the same origin
and end, and disjoint sets of intermediate nodes). Every galled tree is TC and
semibinary [18].

• A phylogenetic network is time consistent [1] when it admits a time assignment,
that is, a mapping τ : V → N such that:

– if (u,v) ∈ E and v is a hybrid node, then τ(u) = τ(v),
– if (u,v) ∈ E and v is a tree node, then τ(u) < τ(v).

Time consistent tree-child and tree-sibling phylogenetic networks will be de-
noted, for simplicity, TCTC and TSTC, respectively.

• A phylogenetic network is reduced [13] when the only pairs of nodes with the
same sets of descendant leaves consist of a hybrid node and its only child, pro-
vided that the latter is of tree type.

3 On Nakhleh’s Distance m

Let us recall the distance m introduced by Nakhleh in [14], in the version described
in [5]. Let N = (V,E) be a phylogenetic network on a set S of taxa. For every node
v ∈V , its nested label λN(v) is defined by recurrence as follows:

• If v is the leaf labelled i, then λN(v) = {i}.
• If v is internal and all its children v1, . . . ,vk have been already labelled, then λN(v)

is the multiset {λN(v1), . . . ,λN(vk)} of their labels.

The absence of cycles in N entails that this labelling is well-defined.
The nested labels representation of N is the multiset

λ (N) = {λN(v) | v ∈V},

where each nested label appears with multiplicity the number of nodes having it as
nested label. Nakhleh’s distance m between a pair of phylogenetic networks N,N′
on a same set S of taxa is then
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m(N,N′) = |λ (N)�λ (N′)|,

where the symmetric difference and the cardinal refer to multisets.
This distance trivially satisfies all axioms of metrics except, at most, the separa-

tion axiom, and thus this is the key property that has to be checked on some class
of networks in order to guarantee that m is a metric on it. So far, this distance m is
known to be a metric for reduced networks [15], TC networks [5], and semibinary
TSTC networks [5] (always on any fixed set of labels S). On the other hand, it is not
a metric for arbitrary TSTC networks [5]. We add now the following result.

Theorem 1. Nakhleh’s distance m is a metric on the class of all semibinary TS
networks on any fixed set of labels S.

Proof. Fisrt of all, we prove that two different nodes in a semibinary TS (sbTS, for
short) network have always different nested labels. Indeed, assume that v,w are two
nodes in a sbTS network N such that λN(w) = λN(v). Without any loss of generality,
we assume that v is a node of smallest height with the same nested label as another
node. By definition, v cannot be a leaf, because the only node with nested label
{i}, with i ∈ S, is the leaf labelled i. Therefore v is internal: let v1, . . . ,vk (k � 1)
be its children, so that λN(v) = {λN(v1), . . . ,λN(vk)}. Since λN(w) = λN(v), w has
k children, say w1, . . . ,wk, and they are such that λN(vi) = λN(wi) for every i =
1, . . . ,k. Then, since v1, . . . ,vk have smaller height than v and by assumption v is a
node of smallest height among those nodes with the same nested label as some other
node, we deduce that vi = wi for every i = 1, . . . ,k. Therefore, v1, . . . ,vk are hybrid,
and their parents v,w (which are their only parents, by the semibinarity condition)
have no more children, which implies that v1, . . . ,vk do not have any tree sibling.
This contradicts the TS condition for N.

The non existence of any pair of different nodes with the same nested label in a
sbTS network N = (V,E) implies that, for every u,v∈V , (u,v)∈E iff λN(v)∈λN(u)
(indeed: on the one hand, the very definition of nested label entails that if (u,v)∈ E ,
then λN(v)∈ λN(u); and conversely, if λN(v)∈ λN(u), then u has a child v′ such that
λN(v′) = λN(v), and by the injectivity of nested labels, it must happen that v = v′).
This clearly implies that a sbTS network can be reconstructed, up to isomorphisms,
from its nested labels representation, and hence that non-isomorphic sbTS networks
always have different nested label representations. ��

4 A Simpler Nodal Distance for Binary Networks

For simplicity, assume in this section that S is a finite set of non-negative integers.
The path-length LT (i, j) between a pair of leaves i, j ∈ S in a phylogenetic tree T
on S is the length of the unique undirected path connecting them. It is well known
that the path-lengths vector (LT (i, j))i, j∈S, i< j characterizes up to isomorphism a
binary phylogenetic tree, but there exist non-isomorphic non-binary phylogenetic
trees with the same path-lengths vectors [7]. This means that any distance for phy-
logenetic trees based on the comparison of these vectors will only be a metric for
binary trees.
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In [8] we generalized the notion of path-length between a pair of leaves from
phylogenetic trees to phylogenetic networks, by defining the LCSA-path length be-
tween two leaves as the sum of the distances from the leaves to their Least Common
Semistrict Ancestor [3, §IV], a certain uniquely defined common ancestor of them
that plays the role in phylogenetic networks of the least common ancestor in phylo-
genetic trees (two leaves in a phylogenetic network need not have a least common
ancestor). In this section we use a simpler approach to define a path-length between
a pair of leaves. Actually, the simplest way would be to define the (undirected) path-
length between a pair of leaves as the length of a shortest undirected path connect-
ing them. But these path-lengths do not characterize a binary phylogenetic network,
even in the most restrictive case: time consistent galled trees (see Fig. 1). Therefore,
we must take here another approach.

1 2 3 4 1 2 3 4

Fig. 1 Two non-isomorphic binary time consistent galled trees with the same undirected
path-lengths between pairs of leaves

For every pair of leaves i, j ∈ S of a phylogenetic network N on S, let the TCA-
path-length (TCA stands for ‘Through a Common Ancestor’) �N(i, j) between them
be the length of a shortest undirected path consisting of a pair of paths from a com-
mon ancestor of i and j to them. Of course, if N is a phylogenetic tree, then the
TCA-path-length is equal to the usual path-length.

The TCA-path-lengths vector of N is �(N) = (�N(i, j))i, j∈S, i< j. Since the path-
lengths vectors only separate binary phylogenetic trees, it only makes sense to ask
in which classes of binary phylogenetic networks do the TCA-path-lengths vectors
separate its members. We have the following result:

Theorem 2. The TCA-path-lengths vectors separate binary TCTC networks, but
they do not separate binary galled trees, TSTC networks, or TC networks.

The counterexamples corresponding to the negative part of this statement can be
found in Fig. 2. We now sketch a proof of the positive assertion on binary TCTC
networks (bTCTC networks, for short), which is based on algebraic induction using
reductions (for a detailed explanation of this technique, see [6, §V]). This proof is
similar to the proof given in [8] of the same property for LCSA-path-length vectors.

To begin with, we introduce a pair of reduction procedures that decrease the
number of leaves and nodes in a bTCTC network.

(R) Let i, j be two sibling leaves in a bTCTC network N, and let v be their parent.
The R(i; j) reduction of N is the bTCTC network NR(i; j) obtained by removing
the leaves i, j from N, together with their incoming arcs, and labelling with j
the node v (which has become a leaf); cf. Fig. 3.
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1 2 2 1 1 2 3 4 2 1 4 3

Fig. 2 Left: Two non-isomorphic binary galled trees (and in particular, TC networks) with
the same vectors of TCA-distances. Right: Two non-isomorphic binary TSTC networks with
the same vectors of TCA-distances

(H) Let A be a hybrid node in a bTCTC network N such that its only child is the leaf
i and its siblings are the leaves j1, j2; let v1 and v2 be, respectively, the parents
of these leaves. The H(i; j1, j2) reduction of N is the bTCTC network NH(i; j1, j2)
obtained by removing the nodes i, j1, j2,A, together with their incoming arcs,
and labelling the nodes v1 and v2 (which have become leaves) with j1 and j2,
respectively; cf. Fig. 3.

v

j i

=⇒ j A

i

v1

j1

v2

j2

=⇒ j1 j2

Fig. 3 Left: The R(i; j) reduction. Right: The H(i; j1, j2) reduction

Let R−1(i; j) and H−1(i; j1, j2) be the inverse expansions of R(i; j) and H(i; j1, j2),
respectively. Given a bTCTC network N without any leaf labelled with i:

• The R−1(i; j) expansion can be applied to N if it has a leaf labelled with j, and
then NR−1(i; j) is the bTCTC network obtained by removing this label, adding two
tree children to the corresponding node, and labelling them with i and j.

• The H−1(i; j1, j2) expansion can be applied to N if it contains a pair of leaves
labelled with j1 and j2 with the same time value under some time assignment,
and then NH−1(i; j1, j2) is the bTCTC network obtained by first removing the la-
bels j1 and j2, and then, if we denote by v1 and v2 the resulting nodes, by
adding a new (hybrid) node A, three tree leaves labelled with i, j1 and j2, and
arcs (v1, j1),(v2, j2),(v1,A),(v2,A),(A, i).

It is straightforward to check that an expansion R−1(i; j) or H−1(i; j1, j2) can always
be applied to the result of an application of the respective R(i; j) or H(i; j1, j2) reduc-
tion, and that the application of these expansions preserve isomorphisms. Moreover,
arguing as in [8, Prop. 17], we can prove the following result.

Proposition 1. Let N be a bTCTC network with more than one leaf. Then, there
always exist some R or H reduction that can be applied to N.

So, by [6, Lem. 6], and since there is only one bTCTC network with 1 leaf (up to
relabelling and isomorphisms), to prove that the TCA-path lengths vectors separate
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bTCTC networks, it is enough to prove that the possibility of applying a reduction
to a bTCTC network N can be decided from �(N), and that the TCA-path-lengths
vector of the result of the application of a reduction to a bTCTC network N depends
only on �(N) and the reduction. These two facts are given by the the following
lemma. Its proof is similar to (and easier than) those of Lemmas 20 and 22 in [8],
and we do not include it.

Lemma 1. Let N be a bTCTC network on a set S.

(1) R(i; j) can be applied to N iff �N(i, j) = 2. And if R(i; j) can be applied to N,
then

�NR(i; j) ( j,k) = �N( j,k)−1 for every k ∈ S\ {i, j}
�NR(i; j) (k, l) = �N(k, l) for every k, l ∈ S\ {i, j}

(2) H(i; j1, j2) can be applied to N iff

• �N(i, j1) = �N(i, j2) = 3,
• if �N( j1, j2) = 4, then �N( j1,k) = �N( j2,k) for every k ∈ S\ { j1, j2, i}.
And if H(i; j1, j2) can be applied to N, then

�NH(i; j1, j2) ( j1, j2) = �N( j1, j2)−2
�NH(i; j1, j2) ( j,k) = �N( j,k)−1 for every k ∈ S\ {i, j1, j2} and j ∈ { j1, j2}
�NH(i; j1, j2) (k, l) = �N(k, l) for every k, l ∈ S\ {i, j1, j2}

We define the TCA-nodal distance between a pair of phylogenetic networks N,N′
as the Manhattan distance between their TCA-path-lengths vectors:

dTCA(N,N′) = ∑
i, j∈S, i< j

|�N(i, j)−dN′(i, j)|.

This distance satisfies trivially all axioms of metrics except, at most, the separation
axiom. Therefore, Thm. 2 implies the following result.

Corollary 1. The TCA-nodal distance is a metric on the class of all bTCTC net-
works on a given set S of taxa, but it is not a metric for binary galled trees, TSTC
networks, or TC networks.

Of course, we could have defined a nodal distance for phylogenetic networks by
comparing their TCA-path lengths vectors using any other metric for real-valued
vectors, for instance the euclidean metric, and the conclusion would be the same.

To frame this corollary, recall that the LCSA-nodal distance defined by comparing
the LCSA-path-lengths vectors using the Manhattan distance satisfies exactly the
same result: it is a metric for bTCTC networks, but not for binary galled trees,
TSTC networks, or TC networks [6, 8]. On the other hand, the LCSA-nodal distance
between a pair of phylogenetic networks with n leaves, m internal nodes and e arcs
can be computed in time O(me+n2m) using a simple algorithm (cf. [4]). The natural
adaptation of this algorithm to the computation of the TCA-nodal distance runs in
time only O(ne + n2m).
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3. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks

I: Generalizations of the Robinson-Foulds metric. IEEE T. Comput. Biol. 6, 1–16 (2009)
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18. Rosselló, F., Valiente, G.: All that glisters is not galled. Mathematical Biosciences 221,
54–59 (2009)



Cramér Coefficient in Genome Evolution

Vera Afreixo and Adelaide Freitas

Abstract. The knowledge of full genome sequences for a growing number of organ-
isms and its accessibility in Web has motivated an increasing development of both
statistical and bioinformatics tools in Genetics. One of main goals is the identifica-
tion of relevant statistical structures in DNA in order to understand the general rules
that govern gene primary structure organization and its evolution.

In this paper, we analyze the dependence between genetic symbols for the to-
tal coding sequences of twelve species. For each specie we define codon bias pro-
files calculating the levels of association between codons spaced by d codons and
the levels of association between codons and nucleotides spaced by d nucleotides,
d ∈ {0,1,2, . . .}, given by the Cramér coefficient usually applied in contingency
tables. Comparisons among the twelve species suggest these profiles can capture
essential information about DNA structure in a genomic scale allowing the con-
struction of a dendrogram which is, in some aspects, coherent with the biologically
evolution for these species.

1 Introduction

The DNA coding sequences are composed by sequential non-random associations
of 4 nucleotides (Adenine – A, Cytosine – C, Guanine – G, and Thymine –T ). The
number of nucleotides in each coding sequence is multiple of 3 and each triple of
nucleotides in a specific frame define one codon. Each coding sequence is initialized
with the codon AT G and finished with the codon TAA, TAG or T GA (stop codons).
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There are 43 = 64 possible codons codifying only 20 proteinic units or amino acids
and 3 stop codons that indicate that the protein in construction is concluded. This
redundancy has been studied in different manners in order to unveil gene primary
structure features: codon usage, codon pair context, N1 context, codon adaptation
index, among others (see, for example, [2, 3, 4, 5, 8, 10, 11, 12]).

Also distinct statistical methodologies have been applied to test the existence
of bias between genetics symbols. Some of these methodologies are based on
statistic test that compares the observed frequencies with the expected frequencies
under independence between the variables under study. A ratio called relative
abundance is suggested in [5]. The authors studied the influence of neighbor nu-
cleotides surrounding each codon belonging to a pre-defined synonymous group.
For codon pair context, in [7, 9] is proposed an analysis of adjusted residuals based
on Pearson’s chi-squared statistic after the construction of the contingency table
obtained by counting all combinations of two consecutive codons from the se-
quenced genome. The statistical analysis confirmed the existence of pairs highly
biased. One advantage of this methodology is the existence of complementary
tools such as measures of association to quantify the strength of this dependence
(bias).

Herein we propose to evaluate the DNA dependence structure through codon
bias profiles given by the degrees of association between codons spaced by d
codons and the degrees of association between codons and nucleotides spaced by
d nucleotides, d ∈ {0,1,2, . . .}, calculated by the Cramér coefficient usually ap-
plied as a measure of association in contingency tables. The application of this
methodology on fully sequenced genomes of 2 Bacteria and 10 Eukaryota pro-
vided a tree that describes an expectable phylogenetic evolution of these species.
Phylogenetic trees reproduce evolutionary trees that represent the historical rela-
tionships between the species. Recent phylogenetic tree algorithms use nucleotide
sequences. Typically, these trees are constructed on multiple sequence alignments
of homologous genes [6], which is a computationally demanding task. Our pro-
posal is based on global patterns of the association of codons and codon-nucleotide
pairs in the total coding sequences in each specie. Our results on the twelve species
suggest that an analysis of the Cramér coefficient can shed new light into impor-
tant gene primary structure features and provide an algorithm based on associ-
ation values between spaced codons that is able to build a kind of phylogenetic
trees.

For easy computation we use Anaconda (http://bioinformatics.ua.
pt/applications/anaconda) which is a bioinformation system for auto-
mated statistical analysis of coding sequences on a genomic scale [9]. In Section
2 we descreve the procedures in order to obtain the codon bias profiles in terms of
the levels of association between genetic symbols. In Section 3 we present the ex-
perimental results of our methodology when applied to twelve species, summarizing
our conclusions and future research in Section 4.
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2 Methods

Given a completely sequenced genome, the bioinformatics system Anaconda iden-
tifies the start codon and reads the complete gene sequence of an genome fixing a
codon (ribosomal P-site) and memorizing its neighbors codons (E-site codon and
A-site codon) [9]. The data are then processed into several contingency tables of
variable pairs: (amino acid, amino acid), (codon, codon), (codon, amino acid), and
depending on the position of a nucleotide in the codon, (codon, first nucleotide),
(codon, second nucleotide) and (codon, third nucleotide), considering both 3′ and 5′
reading directions by the ribosome, and where the genetic symbols in each pair are
spaced by d codons in gene sequences, for any choice of d ∈ {0,1,2, . . .} input by
user [9]. For instance, for the pair (codon, codon) with d = 0 and 3′ direction Ana-
conda provides a 61× 64 contingency table of consecutive codon pairs, where the
61 rows correspond to the all possible codons in the P-site and the 64 columns to the
all codons in the A-site of the ribosome. For the contexts involving one nucleotide,
61×4 contingency tables will be obtained.

For testing the independence between the two variables in each table, the Pearson
chi-squared statistic (χ2) is calculated.

One disadvantage to consider χ2 is its dependence on the table dimension and on
the total number of observations. The Cramér coefficient, given by

√
χ2/n

min(r−1,c−1)
,

is a measure of association in r× c contingency tables based on χ2 that is inde-
pendent of r, c and the total number of observations (n) allowing then comparisons
between different tables [1].

Let CS(d) denote the value of the Cramér coefficient on the contingency table
of the variable pairs (codon, S) spaced by d genomic symbols S in the total cod-
ing sequenced genome. In order to explore the codon bias in a genomic scale and
benefit Anaconda outputs, we calculate the levels of the association CS(d) when
S ∈ {codon, nucleotide} and for several values of d.

2.1 DNA Data

For this study we have downloaded the total coding sequences of twelve differ-
ent species (Table 1) from the RNA files at the National Center for Biotechnology
Information ftp site (ftp://ftp.ncbi.nih.gov/genomes/) drawing the
complete sets of Gnomon ab initio predictions.

2.2 Experimental Procedure

After the acquisition of gene sequences of each specie, we used Anaconda tools
to convert the data into the contingency tables of two variables mentioned above
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Table 1 List of DNA build references for the twelve species considered in the present study

Species Reference
Homo sapiens (human) Build 37.1
Pan troglodytes (chimpanzee) Build 2.1
Rattus norvegicus (brown rat) Build 4.1
Ornithorhynchus anatinus (platypus) Build 1.1
Gallus gallus (chicken) Build 2.1
Apis mellifera (honey bee) Build 4.1
Vitis vinifera (grape vine) Build 1.1
Arabidopsis thaliana (thale cress) AGI 7.2
Saccharomyces cerevisiae str.S228C (budding yeast) SGD 1
Schizosaccharomyces pombe (fission yeast) Build 1.1
Escherichia coli str.K12 substr.MG1655 (bacterium) NC000913
Salmonella typhi (bacterium) NC003198

selecting d ∈ D = {0,1,2,3,4,5}. All tables were obtained excluding the first and
the last codon of each gene and with a gene control available in Anaconda (test three
multiple nucleotide, codon stop, without stop intermediate codon, test start codon,
without letters N).

For each specie, we computed CS(d), S ∈ {codon, nucleotide}, and created two
vectors (codon bias profiles): one with the levels of the association between codons,
[Ccodon(d)]d∈D and another with the levels of the association between codons and
nucleotides, [Cnucleotide(d)]d∈D. With these profiles we constructed dendrograms to
discover relationships between the twelve species considered.

3 Results

Since Pearson chi-squared statistic led to the rejection of null hypothesis of in-
dependence (p-value< 0.00001) for all contingency tables generated, we investi-
gated the levels of associations CS(d), with S ∈ {codon, nucleotide} and d ∈ D. In
Figure 1 are illustrated the observed codon bias profiles for each specie.

All the observed levels of association are rather low. In general, the values of
Ccodon(d) decrease when the distance d increases observing greater gap from d = 0
to d = 1. Nevertheless, as biologically expected [3], the levels of association be-
tween contiguous codons are stronger than between codon pairs spaced by k ≥ 1
codons. For the values Cnucleotide(d), it seems there are no global regularities. All
species except A. mellifera present the highest degree of association between a
codon and the first nucleotide of the following one.



Cramér Coefficient in Genome Evolution 105

0 1 2 3 4 5
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

d

C
ra

m
ér

 c
oe

ffi
ci

en
t

 

 

S.cerevisiae
H.sapiens
P.troglodytes
S.pombe
E.coli
S.typhi
V.vinifera
O.anatinus
A.mellifera
A.thaliana
G.gallus
R.norvegicus

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

d

C
ra

m
ér

 c
oe

ffi
ci

en
t

 

 
S.cerevisiae
H.sapiens
P.troglodytes
S.pombe
E.coli
S.typhi
V.vinifera
O.anatinus
A.mellifera
A.thaliana
G.gallus
R.norvegicus

Fig. 1 Observed values of Ccodon(d) -top- and Cnucleotide(d) -bottom- for the twelve species
studied

From Figure 1 the codon bias profiles [CS(d)]d∈D seem to identify each specie,
and so may be used as a genomic signature, allowing then the comparison of species.
Dendrograms using the set of profiles [Ccodon(d)]d∈D and [Cnucleotide(d)]d∈D of the
twelve species were built with complete linkage clustering and Euclidean distance.
The profiles [Ccodon(d)]d∈D allowed to obtain a better dendrogram which can be
interpreted as a kind of phylogenetic tree (see Figure 2). It shows hierarchical clus-
ters: bacterias (S. typhi, E. coli), yeasts (S. pombe, S. cerevisiae), plants (A. thaliana,
V. vinifera), and animals (H. sapiens, P. troglodytes, R. norvegic, O. anatinus,
G. gallus, A mellifera). For animal cluster, we still distinguish a mammalia
cluster.
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Fig. 2 Phylogenetic tree for the twelve species studied

4 Conclusions and Future Work

The number of complete sequenced genomes is growing up. However, traditional
sequence alignment algorithms are a computationally demanding task. In our work
a new methodology based on Crámer coefficient is proposed. With the association
values of limited number of different codon contexts, we construct a short vector
with dimension 5 (codon bias profile).

The low levels of association in all considered contexts of the studied species sug-
gest that the codon bias, when measured in a global manner, represents a small frac-
tion of the set of all features that define the rules in the coding sequences. However,
these low levels seem to have a biological interpretation and be sufficiently distinct
to create a phylogenetic tree. The dendrograms for the considered species are in ac-
cordance with the some expected similarities. Some groups can be identified: ani-
mals, plants, fungi, bacteria. All these facts suggest that an analysis of the Crámer
coefficient can shed new light into aspects of the codon bias and can help to distin-
guish species. However, the obtained dendrogram does not separate prokaryotes from
eukaryotes.

As future work, we plan to extend this study with more species and to analyze the
influence of the dimension of the codon bias profile. Moreover, it is our intention to
apply others statistical methodologies to do an automatic taxonomic classification
of species using association profiles of each specie.
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An Application for Studying Tandem Repeats in 
Orthologous Genes 

José Paulo Lousado, José Luis Oliveira, Gabriela Moura, and Manuel A.S. Santos 

1 

Abstract. Several authors have being suggesting that the occurrence of amino 
acids repeats in some genes are implied in human diseases. We aim to investigate 
if these repetitions, which one can observe in humans, also exist in orthologous 
genes of several organisms, and how they have evolved along time. However, for 
this kind of study, it is necessary to use different databases and computation 
methods that are not integrated in any specific tool. In this paper, we present a 
bioinformatics application, supported by Web Services, that allows to conduct 
comparative analysis studies for various organisms, along the evolutionary chain.  

Keywords: Data integration, Web Services, tandem repeats, codon repetitions. 

1   Introduction 

The analysis of amino acids sequences of eukaryotic organisms, as well as their 
evolution over time, has been a highly studied area from the point of view of the 
evolutionary chain. Several studies [1-4] showed the relationship that exists 
between some human genes and various illnesses, such as cancer [5], 
neurodegenerative disorders, and some others [6-7]. Many other studies, which are 
directed towards the analysis of the human genome, can also be found in the 
literature. They focus on certain parts of the genomes which have been of the 
utmost importance for the survival of the human species [8-11]. This refers 
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specifically to the repetitions of certain codons and/or amino acids, which have 
received the deserved attention of biologists and health researchers so as to be able 
to predict possible diseases and study specific treatments, namely patient oriented 
medication [12-15]. 

In [16], Pearson identifies a set of genes with repetitions which are related to 
various diseases. Knowing the extent to which these repetitions are present in 
other organisms which are lower in the evolutionary chain is the main question. 
The answer to this question may have implications at various levels, particularly 
in terms of prevention and prophylaxis of certain diseases, as well as the potential 
spread to descendants of genetic diseases, derived from these replicates.  

As a follow up to a previously published paper [17], and given the need to 
expand the work to other human genes, involving other organisms as well, a data 
integration computer application was developed, with the aim of facilitating the 
extraction and comparison of human genes which cause diseases with the 
respective orthologous genes of different organisms so as to analyse the evolution 
that has occurred from species to species. Thus, this study was conducted so as to 
determine whether existing repetitions that cause diseases in humans have 
propagated to less evolved or more evolved organisms, and how that propagation 
occurred, with random loss or with an increase in the number of repetitions. 

The baseline for the study for which the application was developed was the 
KEGG database [18]. OMIM [19] was also used for search diseases related to 
gene repetition. 

The data in the KEGG [18] database is separated by organisms and it can be 
accessed remotely. Querying and relating data of orthologous genes with 
repetitions are extremely time consuming tasks, exacerbate by the fact that there is 
no integrated tool that specifically performs these comparisons in an automated 
manner for a large number of organisms. Creating a bioinformatics application to 
perform these tasks in an autonomous and integrated manner is, therefore, crucial 
to obtaining timely data and respective results.  

Special relevance is given in this article to the ease of obtaining orthologous 
genes in a more versatile format so that the data may be saved locally in text files 
for later offline use. The following goal was the automatic analysis of the amino 
acid repetitions of the various genes involved. 

The multi-window functionality introduced in the application is crucial since 
the user does not lose data from query to query being able to have up to ten 
completely independent windows of each of the options. Even if windows are 
closed, they are easily accessible from the drop-down menu. 

2   Methods 

For this approach we have used web services that are already available in several 
biological database, such as KEGG. This web-based technology facilitates data 
gathering, through a real-time programmatic access. A software application can 
retrieve information on demand, as it is needed, avoiding downloading a bunch of 
data, typically through file transfer, just to extract a small sample.  
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In order to carry out this work a standalone application was developed, 

following a specific workflow (Fig. 1). It iteratively constructs a relationship 
between the genes of various organisms using genes that have been previously 
identified as those which are implicated in diseases, containing codon/amino acid 
repetitions. Following the work presented by Jones and Pevzner [4], we assume 
the default value 10 as the minimum representative number of codon and/or amino 
acid repetitions.  

 

Find  Genes related
with Human Disease

Apply filter to genes
with repetitions >10

of same codon

Select genes with
repetitions related

with diseases

Select genes with
repetitions not

related with diseases
(control group)

Get orthologs from
KEGG database

Compare
results

Get all human genes
from KEGG

 

Fig. 1 Data Integration Workflow 

The amino acid and codon date are extracted from KEGG reference database. 
From these files, the application isolates the genes that have replicated codons in 
sequences, at least with the predefined size threshold.  

Once the genes and respective replicated amino acids are identified, a new 
phase is applied to determine the genes related to diseases. To isolate gene-
diseases associations that are caused by tandem repeats, we use OMIM database, 
since it groups this information in a coherent and effective manner [20]. 

After that phase, the genes that possess repetitions responsible for diseases are 
isolated from the remaining genes, which are not directly related to diseases. The 
purpose of this separation is to create a control group of genes to validate the 
study. At the end, the results obtained from the test group will be compared with 
the results from the control group. 

From that point, it begins the process of comparing orthologous genes from 
human to each previously selected organism. A database of human genes and the 
respective orthologous genes of the various organisms is created. 
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The application was developed using the .NET platform integrated with Office 
Web Components. 

The use of the KEGG web services, including its integration with the .NET 
platform requires some modifications in the default parameters to avoid timeouts 
and transfer breaks (Fig. 2).  

 

 

Fig. 2 Changes applied on KEGG Web Services parameters 

Thus problems related to the data buffer memory capacity via http and timeout 
errors can be overcome. The errors of passing data via http occur when the data 
buffer is exhausted. This value is defined as 64Kb by default, which is clearly 
insufficient since there are genes whose associated information greatly exceeds 
this value. Setting this parameter with a value close to 50Mb practically 
guarantees the collection of data without errors. To avoid situations in which the 
system may use time-consuming connection resources, the timeout parameter was 
set at 2 minutes. 

The Framework is made up of two modules: “Data Retrieve” and “Orthologous 
Search”. The first module is an exploration tool isolated from the database (back 
office). This allows the system to return the respective orthologous at the desired 
depth by merely introducing the gene or KO, e.g. hsa:367 or ko:K08557. The 
information collected is then displayed in the application’s frames. The respective 
orthologous genes are displayed on the left-hand list as well as the information on 
diseases related to that gene and pathways, if such is the case. The user may then 
access the orthologous by simply selecting the respective gene from the list on the 
left. The data that are being viewed in the amino acid and nucleotide frames are 
held in memory by default. The user may save the data by simply selecting the 
respective option (Fig. 3). By accessing the list of diseases, the window shows all 
of the available information including references about each disease. 

The “Orthologous Search” module is essentially an application of batch 
processing, that is, once the user creates the list of genes to be analysed and the list 
of organisms to be compared, the system will submit data to the KEGG database, 
automatically and iteratively. It extracts the information and saves the respective 
file in the folder that has been previously selected for that purpose.  

As the data are being processed, a list of orthologous genes in the selected 
organisms is created. The order in the final list depends on the degree of similarity 
against the original sequence. If the orthologous genes in one or more organisms 
do not appear, the Limit field may be adjusted to a higher value. For example, 
Limit=60 and Offset=20 will return orthologous genes that are found between 
position 20 and 80 in the KEGG database for the orthologous genes being studied. 
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Fig. 3 Application Interface With Multiple Windows 

The tool also incorporates other functionalities, including the search of 
repetitions of amino acids with or without the admission of errors by the 
orthologous of one or more genes placed in the first column. Thus, we can resort 
to the use of the local files previously saved in Batch Processing, or opt for using a 
connection to the Web. In this case performance may go down, but on the other 
hand more up-to-date results may be obtained. 

After processing, several spreadsheets are created with the results of the 
analysis on each of the respective orthologous. These spreadsheets can be 
processed locally as a single file in XLS format.  

3   Discussion 

To test the application, we have conducted an analysis in accordance with the 
previously presented protocol (Figure 1), comparing human genes under the 
referred conditions with the respective orthologous genes of the organisms 
presented in Table 1. Obtaining the results was almost immediate for the local 
source (offline), and it takes only a few seconds, depending on bandwidth, when 
we use directly the web server as a source of data (online). Integrating scattered 
data, whether via the Web (several sources), whether by post-processing (offline 
files), the developed tool becomes a crucial ally for researchers, mainly in 
situations of massive data extraction. 
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Table 1 Organisms list and genealogic classification 

Bos taurus ftp://ftp.genome.jp/pub/kegg/genes/organisms/bta 
Canis familiaris ftp://ftp.genome.jp/pub/kegg/genes/organisms/cfa 
Homo sapiens ftp://ftp.genome.jp/pub/kegg/genes/organisms/hsa 
Mus musculus ftp://ftp.genome.jp/pub/kegg/genes/organisms/mmu 

viviparous 

Pan troglodytes ftp://ftp.genome.jp/pub/kegg/genes/organisms/ptr 
marsupial Monodelphis domestica ftp://ftp.genome.jp/pub/kegg/genes/organisms/mdo 

m
am

m
al

s 

oviparous Ornithorhynchus anatinus ftp://ftp.genome.jp/pub/kegg/genes/organisms/oaa 
bird Gallus gallus ftp://ftp.genome.jp/pub/kegg/genes/organisms/gga 

ve
rte

br
at

e 

fish Danio rerio ftp://ftp.genome.jp/pub/kegg/genes/organisms/dre 
Insect Drosophila melanogaster ftp://ftp.genome.jp/pub/kegg/genes/organisms/dme 
worm Caenorhabditis elegans ftp://ftp.genome.jp/pub/kegg/genes/organisms/cel 
plant Arabidopsis thaliana ftp://ftp.genome.jp/pub/kegg/genes/organisms/ath 

Aspergillus fumigatus ftp://ftp.genome.jp/pub/kegg/genes/organisms/afm 
Kluyveromyces lactis ftp://ftp.genome.jp/pub/kegg/genes/organisms/kla 
Saccharomyces cerevisiae ftp://ftp.genome.jp/pub/kegg/genes/organisms/sce fungus 
Schizosaccharomyces 
pombe ftp://ftp.genome.jp/pub/kegg/genes/organisms/spo 

protozoan Plasmodium falciparum ftp://ftp.genome.jp/pub/kegg/genes/organisms/pfa 
Clostridium perfringens  ftp://ftp.genome.jp/pub/kegg/genes/organisms/cpe 

in
ve

rte
br

at
e 

bacteria 
Mycobacterium tuberculosis ftp://ftp.genome.jp/pub/kegg/genes/organisms/mtu 

4   Conclusion 

Codon repeats in DNA are contiguous, and some time approximate, copies of a 
pattern of trinucleotides. These repeats have been associated to specific human 
diseases, and may play a variety of regulatory and evolutionary roles.  

In this paper we presented a computation application that simplifies the study 
of genes with this type of patterns, along the evolutionary chain. For that the 
software extracts orthologous genes from public resources and performs a 
comparative analysis that allows showing how repeats have evolved along the 
time for the specie other study. 
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Accurate Selection of Models of Protein 
Evolution 

Mateus Patricio, Federico Abascal, Rafael Zardoya, and David Posada 

1 

Abstract. We carried out computer simulations to assess the accuracy of the pro-
gram ProtTest in recovering best-fit empirical models of amino acid replacement. 
We were able to show that regardless of the selection criteria used, the simulated 
model or a very close one was identified most of the time. In addition, the esti-
mates of the different model parameters were very accurate. Our results suggest 
that protein model selection works reasonably well.  

1   Introduction 

The use of different models of nucleotide substitution or amino acid replacement 
can change the outcome of the phylogenetic analysis [1]. Apart from the different 
effects on parameter estimation and hypothesis testing, in general, phylogenetic 
methods may be less accurate –recover more often a wrong tree–, or may be in-
consistent –converge to a wrong tree with increased amounts of data– when the 
assumed model of evolution is wrong. Conveniently, best-fit models of molecular 
evolution can be selected for the data at hand using sound statistical techniques, 
like hierarchical likelihood ratio tests, information criteria, Bayesian methods or 
performance-based approaches [2]. Several of these strategies have been imple-
mented in different computer programs like ModelTest [3] and jModelTest [4] for 
DNA sequences, and ProtTest [5] for proteins. The performance of ModelTest 
was examined in detail by Posada and Crandall [6], who showed that model selec-
tion was very accurate in the case of nucleotides. However, we do not know 
whether this is the case for protein sequences. In order to answer this question we 
have used computer simulations to evaluate the ability of ProtTest in recovering 
the simulated model of amino acid replacement. 
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2   Materials and Methods 

To simulate the protein alignments, we downloaded from http://www.atgc-
montpellier.fr/phyml/datasets.php the set of trees that were used to evaluate the 
performance of the Phyml algorithm [7] for phylogenetic estimation. This set con-
tains 5000 simulated non-clock trees comprising 40-taxon each, and includes a va-
riety of topologies and tree heights. For each one of these trees, we generated a 
40-sequence alignment with 1000 amino acids using Seq-Gen [8], under the JTT 
[9] matrix of amino acid substitution, with rate variation among sites (number of 
gamma rate categories = 4; alpha gamma shape = 0.5; proportion of invariable 
sites = 0.2). This model, whose acronym is JTT+I+G, will be referenced hereafter 
as the true model. For each alignment, the best-fit model of amino acid replace-
ment was selected with ProtTest among 112 candidate models using the uncor-
rected and corrected Akaike Information Criterion (AIC and AICc) and the  
Bayesian Information Criterion (BIC), including model-averaged estimates and 
parameter importances (see [2]). For the AICc and BIC, sample size was calcu-
lated as the number of sites in the alignment. The calculation of the likelihood 
score and maximum likelihood (ML) tree for each model is very time-consuming, 
and in order to speed up the whole process all the program executions were carried 
out using distributed computing techniques. After running ProtTest, we counted 
the amount of times the generating model was correctly identified and calculated 
the mean squared error (MSE) of the parameter estimates. 

3   Results 

ProtTest correctly identified the true model (JTT+I+G; ~90%) or very closely related 
model (JTT+G; 10%) most of the time (Table 1). In general, the best-fit model was 
selected with little uncertainty and therefore receiving large weights (Table 2). 
 
Table 1 Number of times each model was identified as the best-fit model (percentages in 
parentheses) 

Model JTT+G JTT+I+G JTT+G+F JTT+I 

AIC 
523 

(0.10) 
4466 
(0.90) 

1 
(0) 

6 
(0.001) 

AICc 
553 

(0.11) 
4437 
(0.90) 

6 
(0.01) 

– 

BIC 
1034 
(0.21) 

3956 
(0.79) 

– 
6 

(0.001) 

 
Table 2 Average/median model weights for the different models according to the three 
model selection criteria 

Model True Best 2nd Best JTT+G 
AIC 0.90 0.90 0.31 0.31 
AICc 0.89 0.89 0.33 0.33 
BIC 0.79 0.79 0.52 0.52 



Accurate Selection of Models of Protein Evolution 119
 

The estimates of the alpha and p-inv parameters were very accurate, regardless 
of whether they corresponded to the best-fit model, to the true model, or to model-
averaged estimates (Fig. 1 and Tables 3 and 4). 

 

Fig. 1 Parameter estimates of the shape of the gamma distribution (alpha) and the propor-
tion of invariable sites (p-inv) for the best-fit model, true model and model-averaged esti-
mates (the three lines are almost perfectly overlapping) under the AIC framework..Vertical 
lines correspond to the true simulated values 

Table 3 Mean squared error (MSE), mean (Mean) and standard deviation (Sd) of the estimated 
shape of the gamma distribution (alpha) 

 MSE Mean Sd 
Best-fit model 0.016 0.508 0.115 
True model 0.013 0.508 0.115 
Model-averaged  0.013 0.508 0.115 

 
Table 4 Mean squared error (MSE), mean (Mean) and standard deviation (Sd) for the estimated 
proportion of invariable sites (p-inv) 

 MSE Mean Sd 
Best-fit model 0.004 0.190 0.065 
True model 0.004 0.190 0.064 
Model-averaged  0.004 0.190 0.064 

 
 
The importance of the parameters (Fig. 2) shows that the most important parame-
ter is the joint contribution made by the proportion of invariable sites plus the 
shape of the gamma distribution (p-inv + alpha), which is the expected since the 
true model includes both (JTT+I+G). 
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Fig. 2 Relative importance of parameters. alpha: Mean = 0.09785 and Sd = 0.20990. p-inv: 
Mean = 0.00176, and Sd = 0.02630. alpha+p-inv: Mean = 0.90037, Median: 1, Var = 
0.04595 and Sd = 0.21436. 

4   Discussion 

In our simulations ProtTest was able to identify, regardless the selection criteria 
used, the true generating model (JTT+I+G) or a closely related one (JTT+G) most 
of the time. Given that the only difference between these two models is that the 
former assumes a proportion of invariable sites (here p-inv = 0.2), while in the lat-
ter this proportion is, by definition, zero, it is not surprising that in some cases 
JTT+G was preferred over JTT+I+G. The estimation of the different parameters 
was also very accurate under the thee model selection frameworks explored. Here, 
the estimates provided by the best-fit and true models or using model averaging, 
were very similar, which was expected given that the best-fit model usually corre-
sponded with the true model and received large weights. Also, the parameter im-
portances reflected very well the need for taking into account both a proportion of 
invariable sites and rate variation among the variable sites, in agreement with the 
true model. 

5   Conclusions 

Protein model selection using ProtTest seems to work very well. The AIC and BIC 
frameworks provides accurate tools for the study of the process of molecular evo-
lution at the protein level. Further simulations should explore other generating 
models and quantify the effect of protein model selection on phylogenetic  
accuracy. 
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Scalable Phylogenetics through
Input Preprocessing

Roberto Blanco, Elvira Mayordomo,
Esther Montes, Rafael Mayo, and Angelines Alberto

Abstract. Phylogenetic reconstruction is one of the fundamental problems in com-
putational biology. The combinatorial explosion of the state space and the com-
plexity of mathematical models impose practical limits on workable problem sizes.
In this article we explore the scalability of popular algorithms under real datasets
as problem dimensions grow. We furthermore develop an efficient preclassification
and partitioning strategy based on guide trees, which are used to intently define an
evolutionary hierarchy of groups of related data, and to determine membership of
individual data to their corresponding subproblems. Finally, we apply this method to
efficiently calculate exhaustive phylogenies of human mitochondrial DNA accord-
ing to phylogeographic criteria.

1 Motivation

The organization of living organisms (extant or not) into a “tree of life”, as conceived
by Darwin, is the purpose of the modern discipline of phylogenetics [4]. Continuous
advances in sequencing technologies have supported an exponential growth in pub-
licly available biological sequences over the last quarter century. This abundance
offers extraordinary potential to shed light into the inner workings of evolution.

Phylogenetic techniques infer trees, or generalizations thereof, from multiple se-
quence alignments according to a certain optimality criterion. This mathematical
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scoring scheme acts as a computational surrogate of the true biological objective: to
recover the true evolutionary relationships between living organisms, as represented
by (usually) aligned, meaningful sequences.

Nevertheless, this is a very challenging problem. Not only are there no efficient
methods to calculate an optimal phylogeny given an alignment and a tree scoring
function, but the preservation of the optimality of a solution while adding new data
to it has been proven to be NP-hard for even the elementary parsimony criterion [3].
Therefore, standard practice depends on heuristic methods, which still remain very
costly.

From an information-rich perspective, the main defect of conventional meth-
ods is that they are completely blind, whereas it would be desirable to provide
hints and facts that may constrain and help to simplify problem solution. In this
paper, we resort to evolutionary hypotheses as classifiers and definers of smaller,
simpler subproblems, and illustrate the biological and computational benefits of
such a methodology.

2 Methods

In this section we introduce the working principles of our technique, providing the
experimental grounds for it as well as its theoretical basis. The illustration of the
practice and benefits of this framework is deferred to the next section.

2.1 Stand-Alone Algorithms

There exist many phylogenetic reconstruction methods, but their principal classifi-
cation regards whether they treat statistical quality evaluation as an additional step or
as part of the process itself [6]. This assessment is of the utmost importance because
of the infeasibility of exact algorithms for even small datasets. Both approaches have
strengths and weaknesses, and thus method selection is a very important choice, not
least due to the very poor scaling of most techniques.

To assess the severity of these decisions, we have evaluated the relative perfor-
mance and scalability of the main families of methods; our results are summarized
in Fig. 1. Problem dimensions have been chosen to scale up to moderately sized, real
datasets, with which we will deal in Sect. 3. PHYLIP and MrBayes [5, 8] have been
used for traditional and Bayesian methods, respectively, due to their availability and
generality.

All three traditional methods are seen to follow similar trends, though parsimony
is more abrupt in its progression. Generally speaking, more thorough methods incur
in significantly higher costs, quickly becoming impractical. It should be noted that
these times must be multiplied by the desired number of bootstrap samples for the
analysis, which can nevertheless be executed in parallel.

The raw computational needs of Bayesian methods are more difficult to esti-
mate due to their simulational nature, as is their parallelization. Cost ultimately de-
pends on both problem dimensions, number of iterations (and its relation to model



Scalable Phylogenetics through Input Preprocessing 125

convergence and stop conditions), and possibly number of processors. For the sake
of measurement we have fixed an appropriate, catch-all number of iterations and
assume approximately linear speed-up for the execution setup [1]. Time growth is
comparable, though steeper and orders of magnitude above likelihood search, which
together with indivisibility make these methods impracticable for large datasets.

Generally speaking, it can be concluded that, since problem complexity is always
superlinear, partitioning offers very significant improvements and allows agile pro-
duction of cleaner results; therefore, it should be exploited whenever possible. These
gains can be invested in the calculation of a higher degree of statistical support or
the selection of more sophisticated methods and substitution models.

Fig. 1 Performance and scalability of phylogenetic reconstruction methods along both
problem dimensions: number of sequences s and sequence length l
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2.2 The Supertree Approach

Supertree methods have been conceived to combine, and possibly reconcile, a num-
ber of input subtrees according to the underlying relations between them that are
manifested through a set of overlapping taxa, which are used to puzzle the trees
together [10]. This approach is advantageous in that it is ideally cost-effective and
allows comprehensive studies while preserving known results.

If inputs are reasonably structured and compatible, i.e., there are no unsolvable
contradictions between the inferred sets of clades, it is possible to produce exact
solutions in polynomial time [11]. What we develop here is a further simplification
of the compositional burden based on prior structural knowledge about the data.

Our proposal is an extension of the hierarchical classification problem. If a de-
cision tree can be provided that allows simple, recursive categorization of single
sequences and that reflects well-supported phylogenetic knowledge, such a “skele-
ton tree” can be employed to obtain groups of related sequences, thus splitting the
data into their corresponding subclades. Each of these can be subsequently com-
puted independently and in parallel. In essence, we use supertrees to reduce problem
dimensionality through a classic divide and conquer scheme.

Insofar as we know for certain, or are willing to assume as hypotheses, the re-
lations between the clades defined by the preprocessing hierarchy, composition of
partial results into the final tree is limited to substitution of symbolic “clade nodes”
by their associated subtrees. The substitution skeleton must, however, accommo-
date all clades as leaves of the tree, transferring internal categories down dummy
leaf branches if needed. The process is straightforward save for this provision.

3 Case Study: Human Mitochondrial DNA

Mitochondrial DNA (mtDNA) is one of the most important evolutionary markers
for phylogenetics due to its remarkable features: absence of effective recombination,
high mutation rate and ease of sequencing, among others. Its prime metabolic roles
also grant it prominence in the study of rare genetic disease [13].

Consequently, comprehensive research on human mtDNA is of great interest,
though the very own wealth of available information deters straightforward, manu-
ally supervised trees; we have previously addressed the question in [2] and subse-
quent work. At present we can effectively perform periodic updates to the human
mitochondrial phylogeny, though as we endeavor to show there is plenty of room
for improvement.

3.1 Structural Properties

For the proposed supertree methods to be applicable, firstly a suitable set of classi-
fiers needs to be identified. In the case of mtDNA, its matrilineal inheritance along
with the migrations that scattered the human species around the world gave rise to
mitochondrial haplogroups: large population groups related by common descent,
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Fig. 2 Phylogeographical history of the major human mitochondrial haplogroups, fitted to
MITOMAP’s tree skeleton. The star marks the root of the tree. Internal clades that were
excluded from the hierarchy are greyed out

to which membership can be ascribed simply by checking a handful of defining
polymorphisms.

These groups spread in an arborescent fashion, not unlike a conventional species
tree, as depicted in Fig. 2. The study of human haplogroups is a well-founded area
of ongoing research with diverse applications [12] and a standard cladistic notation
established in [7]. It is therefore perfectly adequate to our purposes as a recipient of
phylogenetic knowledge.

3.2 Materials and Methods

For the conduction of our experiments we have prepared a curated database of com-
pletely sequenced, human mtDNA sequences, partly based on MITOMAP’s query
on GenBank. The aligned sequences (s = 4895, l = 16707) can be assumed to be
homogeneous and show no obvious flaws.

Also from the MITOMAP phylogeny [9] we have selected its “Simplified mtDNA
lineages” as an adequate guide tree that offers a good level of detail for a first clas-
sification. Minor corrections have been made regarding haplogroups B (allowing
room for ambiguity in the definition of its distinctive indel) and I (avoiding a retic-
ulation event for which no evidence has been found and promoting it as a direct
descendant of N).
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Recursive classification has been performed to assign each sequence to its re-
lated haplogroup; sequences that fail to match exactly one category have been
excluded from the analysis (1.7% of the total, a very small fraction given the
low complexity of the skeleton). Haplogroup subtrees have been computed us-
ing distance matrices with neighbor joining clustering and bootstrap sampling, and
Bayesian inference; both under adequate substitution models. Executions have been
distributed across high-performance clusters to exploit the potential parallelism un-
veiled by our method.

3.3 Results

As a result of the classification we obtain 28 clade subsets with sizes up to s =
583 owing to unequal sequencing of population groups around the globe. Due to
the progression of computation times with s, a handful of prolific groups clearly
dominates total execution times. However, the recursive nature of the tree makes it
possible to easily refine copious nodes by simply identifying and adding children

Fig. 3 Human mitochondrial haplogroup supertree. Parent haplogroups have been propa-
gated to the top of their subtrees as leaf haplogroups; they are also labels of their associated
clades
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subtrees as required; this has indeed been the case of Bayesian inference of groups
D, H, M and U, due to technical limitations. In fact, although traditional methods
yield satisfactory throughput, Bayesian inference remains only marginally tractable
and on the whole depends on more extensive partitioning.

The improvements derived from preprocessing are very remarkable. As a refer-
ence, the cost of computing a single distance matrix for the selected dataset with a
suitable, reasonably complex evolutionary model is approximately 105 sec. By con-
trast, a single workstation requires the same time to produce reasonably supported
(e.g., 100 bootstrap samples per haplogroup) combined phylogenies under the same
algorithm and model, therefore amounting roughly to a 100-fold increase in perfor-
mance; additional gains can be achieved by exploiting the larger number of simpler,
less costly tasks.

The phylogenies we obtain are qualitatively better than standard, blind results
in that results are clear, and noise and discordance are confined to individual sub-
problems, hence bounding their potential effect and improving overall quality and
robustness. One such phylogeny can be seen in Fig. 3.

4 Discussion and Future Work

We have presented an efficient and effective supertree technique that effectively
performs a reduction on s, the costliest dimension of the phylogeny reconstruction
problem, through a divide and conquer approach where the penalties of the split
and merge operations are negligible. As a result, computational load is substan-
tially lowered, known properties are respected by construction, and the number of
completely independent, distributable tasks is increased. These improvements af-
ford more detailed treatment of individual problem instances and feasible resolution
of continuously growing inputs.

We also deem it possible to develop reasonably accurate cost prediction, which,
despite some measure of input dependence and irregularity, may be of great assis-
tance in selecting methods (and models) in accord with available time and resources.
Such estimates may also lead to better scheduling and load balancing in distributed
environments.

It has been stressed that solutions are, as a matter of fact, qualitatively better.
Moreover, we would like to know how prior knowledge may affect quantitative
scores when pitted against atomic methods, as well as the effect and progression
of individual algorithms and substitution models, and pinpoint the sources of error,
including those that might cause incorrect group ascription.

Finally, considering that reliable phylogenetic knowledge is the source of all clas-
sification hierarchies, their appraisal merits further attention. The fit of an alignment
and a guide tree, or lack thereof, may evidence a need for (possibly iterative) refine-
ment of one or both parts. Likewise, the capacity to generate restricted datasets and
treat them in finer detail could be used to support (sub)haplogroup identification
while providing feedback and increasing guide tree resolution.
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The Median of the Distance between Two Leaves
in a Phylogenetic Tree

Arnau Mir and Francesc Rosselló

Abstract. We establish a limit formula for the median of the distance between two
leaves in a fully resolved unrooted phylogenetic tree with n leaves. More precisely,
we prove that this median is equal, in the limit, to

√
4ln(2)n.

1 Introduction

The definition and study of metrics for the comparison of phylogenetic trees is a
classical problem in phylogenetics [5, Ch. 30], motivated, among other applications,
by the need to compare alternative phylogenies for a given set of organisms obtained
from different datasets or using different methods. Many metrics for the comparison
of rooted or unrooted phylogenetic trees on the same set of taxa have been proposed
so far. Some of the most popular, and oldest, such metrics are based on the com-
parison of the vectors of distances between pairs of taxa in the corresponding trees
[1, 3, 4, 9, 10, 11]. These metrics aim at the quantification of the rate at which pairs
of taxa that are close together in one tree lie at opposite ends in another tree [7]. But,
in contrast with other metrics, their statistical properties are mostly unknown.

Steel and Penny [10] computed the mean value of the square of the metric for
fully resolved unrooted trees defined through the euclidean distance between their
vectors of distances (they called it the path difference metric). One of the main ingre-
dients in their work was the explicit computation of the mean value and the variance
of the distance d between two leaves in a fully resolved unrooted phylogenetic tree
with n leaves, obtaining that

μ(d) =
22(n−2)

(2(n−2)
n−2

) ∼√πn, Var(d) = 4n−6− μ(d)− μ(d)2
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Such values are also of some interest in themselves, because they give figures against
which to compare the corresponding values for the distribution of distances between
leaves in a reconstructed phylogenetic tree, allowing one to assess how “close to
average” is such a tree. Some specific applications of the probabilistic behaviour of
parameters related to the shape of phylogenetic trees are discussed in [2].

In this work we continue the statistical analysis of this random variable d, by
giving an expression for its median that allows the derivation of a limit formula for
it: namely,

median(d)∼
√

4n ln2.

The derivation of a limit formula for the median of the aforementioned squared path
difference metric between fully resolved unrooted phylogenetic trees remains an open
problem. We hope this result will constitute a first step towards its achievement. We
shall report on this application elsewhere.

2 Preliminaries

In this paper, by a phylogenetic tree on a set S we mean a fully resolved (that is, with
all its internal nodes of degree 3) unrooted tree with its leaves bijectively labeled
in the set S. Although in practice S may be any set of taxa, to fix ideas we shall
always take S = {1, . . . ,n}, with n the number of leaves of the tree, and we shall
use the term phylogenetic tree with n leaves to refer to a phylogenetic tree on this
set. For simplicity, we shall always identify a leaf of a phylogenetic tree with its
label.

Let Tn be the set of (isomorphism classes of) phylogenetic trees with n leaves.
It is well known [5] that |T1| = |T2| = 1 and |Tn| = (2n− 5)!! = (2n− 5)(2n−
7) · · ·3 ·1, for every n � 3.

3 Main Result

Let k, l ∈ S = {1, . . . ,n} be any two different labels of trees in Tn. The distance
dT (k, l) between the leaves k and l in a phylogenetic tree T ∈Tn is the length of the
unique path between them. Let’s consider the random variable

dkl = distance between the labels k and l in one tree in Tn.

The possible values of dkl are 1,2, . . . ,n−1.
Our goal is to estimate the value of the median of this variable dkl on Tn when

the tree and the leaves are chosen equiprobably. In this case, dkl = d12, and thus we
can reduce our problem to compute the median of the variable d := d12.

For every i = 1, . . . ,n−1, let ci be the cardinal of {T ∈Tn | dT (1,2)= i}. Arguing
as in [10, p. 140], we have the following result.
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Lemma 1. cn−1 = (n−2)! and, for every i = 1, . . . ,n−2,

ci = (n−2)!
(i−1)(n−1) · · ·(2n− i−4)

(2(n− i−1))!!
=

(i−1)(2n− i−4)!
(2(n− i−1))!!

.

Lemma 2. For every k=1, . . . ,n−1,
1

(2n−5)!!

k

∑
i=1

ci=1−2k(n−3)!(−k + 2n−4)!
2(2n−5)!(−k + n−2)!

.

Proof. Taking into account that (2 j)!! = 2 j j! and (2 j + 1)!! = (2 j+1)!
2 j j!

, for every
j ∈ N, and using Lemma 1, we have:

1
(2n−5)!!

k

∑
i=1

ci =
(n−3)!

4(2n−5)!

k

∑
i=2

(i−1)2i(2n− i−4)!
(n− i−1)!

=
(n−3)!

4(2n−5)!

k−1

∑
i=1

i2i+1(2n− i−5)!
(n− i−2)!

.

We use now the method in [8, Chap. 5] to compute Sk = ∑k−1
i=1

i2i+1(2n−i−5)!
(n−i−2)! .

Set ti = i2i+1(2n− i−5)!/(n− i−2)!. Then

ti+1

ti
=

2(1 + i)(2 + i−n)
i(5 + i−2n)

.

The next step is to find three polynomials a(i),b(i) and c(i) such that

ti+1

ti
=

a(i)
b(i)
· c(i+ 1)

c(i)
.

We take a(i) = 2(2 + i−n), b(i) = 5 + i−2n and c(i) = i. Next, we have to find a
polynomial x(i) such that a(i)x(i+1)−b(i−1)x(i)= c(i). The polynomial x(i) = 1
satisfies this equation. Then, by [8, Chap. 5],

Sk =
b(k−1)x(k)

c(k)
tk + g(n) =

(4 + k−2n)2k+1(2n− k−5)!
(n− k−2)!

+ g(n),

where g is a function of n. We find this function from the case k = 2:

4(2n−6)!
(n−3)!

= S2 =
8(6−2n)(2n−7)!

(n−4)!
+ g(n).

From this equality we deduce that g(n) =
4(2n−5)!
(n−3)!

. We conclude that:

Sk =
k−1

∑
i=1

i2i+1(2n− i−5)!
(n− i−2)!

=
(4 + k−2n)2k+1(2n− k−5)!

(n− k−2)!
+

4(2n−5)!
(n−3)!

.
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The formula in the statement follows from this expression.

Theorem 1. Let median(d) be the median of the variable d on Tn. Then,

median(d)√
4ln(2)n

= 1 + O
(

n−1/2
)

.

In particular, lim
n→∞

median(d)√
4ln(2)n

= 1.

Proof. To simplify the notations, we shall denote median(d) by k̃. By definition,

k̃ = max
{

k ∈ N |
k

∑
i=1

ci � |Tn|
2

}
= max

{
k ∈ N | 2k(n−3)!(−k + 2n−4)!

2(2n−5)!(−k + n−2)!
� 1

2

}
.

Thus, k̃ is the largest integer value such that

2k̃(n−3)!(−k̃+ 2n−4)! � (2n−5)!(−k̃+ n−2)!.

If we simplify this inequation and take logarithms, this condition becomes

k̃ ln(2) �
k̃+1

∑
j=3

ln

(
2n− ( j + 2)

n− j

)
=

k̃+1

∑
j=3

ln

(
2− j+2

n

1− j
n

)
. (1)

Combining the development of the function ln( 2−( j+2)x
1− jx ) in x = 0,

ln

(
2− ( j + 2)x

1− jx

)
= ln(2)+

1
2
( j−2)x +

1
8
( j−2)(3 j + 2)x2 + O

(
x3) ,

with equation (1), we obtain:

ln(2) � 1
2n

k̃+1

∑
j=3

( j−2)+ O

(
k̃3

n2

)
=

k̃(k̃−1)
4n

+ O

(
k̃3

n2

)
.

So, the first order term of the median k̃ will be the largest integer value that satisfies
k̃2/4n � ln(2). Therefore, the median will be the closest integer to

√
4ln(2)n, from

where the thesis in the statement follows.

4 Conclusions

We have obtained a limit formula for the median of the distance d between two
leaves in a fully resolved unrooted phylogenetic tree with n leaves, namely:

median(d)∼
√

4ln(2)n
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This value complements the determination of the mean value and the variance of this
distance carried out by Steel and Penny [10]. Actually, our method allows to find
more terms of the development of the median, with some extra effort. For instance,
it can be easily proved that

median(d)∼
√

4n ln2+(
1
2
− ln2).

The limit formula obtained in this work can be generalized to the p-percentile

xp = max
{

k ∈ N | ∑k
i=1 ci � |Tn|p

}
. Indeed, using our method we obtain that

xp ≈
√−4ln(1− p)n.

In the near future we plan to extend this work to arbitrary unrooted phyloge-
netic trees, as well as to fully resolved rooted phylogenetic trees (for the mean and
variance figures in the rooted case, see [6]), and to apply this kind of results in
the derivation of a limit formula for the median of the corresponding squared path
difference metrics.
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In Silico AFLP: An Application to Assess What 
Is Needed to Resolve a Phylogeny 

María Jesús García-Pereira, Armando Caballero, and Humberto Quesada 

1 

Abstract. We examined the effect of increasing the number of scored AFLP 
bands to reconstruct an accurate and well-supported AFLP-based phylogeny. In 
silico AFLP was performed using simulated DNA sequences evolving along a 
symmetric tree with ancient radiation. The comparison of the true tree to the esti-
mated AFLP trees suggests that moderate numbers of AFLP bands are necessary 
to recover the correct topology with high bootstrap support values (i.e > 70%). 
However, branch length estimation is rather unreliable and does not improve sub-
stantially after a certain number of bands are sampled. 

Keywords: AFLP, phylogeny, bootstrap support, simulation, accuracy. 

1   Introduction     

The amplified fragment length polymorphism (AFLP) technique is becoming ex-
tensively used as a source of informative molecular markers for phylogenetic in-
ference in many studies of plants, animals, fungi and bacteria [1]. The technique 
generates highly reproducible fingerprints that are usually recorded as a 1/0 band 
presence-absence matrix. Phylogenetic relationships are then inferred analyzing 
the AFLP matrix directly, or converting it into a distance matrix using dissimilar-
ity measures. 

AFLP markers are appropriate for phylogenetic inference as long as sequence 
divergence is small, the topology of the underlying evolutionary tree is symmetric, 
and not very short ancestral branches exist [2]. Recent theoretical studies indicate 
that a major drawback of this technique is the low information content of AFLP 
markers. This weakness seems to have a much larger negative impact on tree reli-
ability than other commonly invoked limitations of AFLP data sets, such as the 
occurrence of non homologous bands or the dominant nature of AFLP characters 
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[2]. Given that the outcome of any phylogenetic analysis critically depends upon 
the amount of data available, we focus on determining how many AFLP bands 
would be needed to resolve a problematic phylogenetic tree. Experimental studies 
aimed at assessing this question are, however, resource intensive and hampered by 
the fact that we rarely know the true tree. Here we investigate one potential strat-
egy for improving phylogenetic inference. Using in silico AFLP fingerprints, we 
assess the likelihood that a well supported phylogeny can be resolved using AFLP 
bands, and how many bands would then be needed. 

2   Methods     

DNA sequences of 2.8 Mb were generated with the software Seq-Gen [3] using 
the Jukes and Cantor substitution model. Simulations with Seq-Gen were per-
formed along a phylogenetic tree (hereafter referred as the reference tree) contain-
ing 16 sequences, with a symmetric topology and a length from the most internal 
node to the tip of 0.02 substitutions per site. Branch lengths were specified using 
an ancient radiation model, in which daughter branches were twice as long as the 
parent branch.  This generated a tree with several short internal branches, making 
it difficult to resolve. 

A computer program written in C was used to simulate the cutting of the gener-
ated DNA sequences with restriction enzymes EcoRI and MseI, which are the 
typical enzymes used in AFLP studies. Only fragments sizes between 40 and 440 
nucleotides were considered in the subsequent analyses to emulate experimental 
studies. A combination of selective nucleotides adjacent to the restriction sites was 
used to simulate the selective amplification of 100 AFLP bands per AFLP profile.  

Phylogenies were estimated with PAUP*4 [4] using the minimum evolution 
method. Estimated AFLP trees were compared with their corresponding reference 
trees by the program Ktreedist [5]. This program computes a K-score that meas-
ures overall differences in the relative branch length and topology of two phyloge-
netic trees. Topological differences among reference and estimated trees were  
assessed using Robinson-Foulds (R-F) [6] distance. High K-scores or R-F dis-
tances indicate a poor match between the estimated AFLP-based tree and the ref-
erence tree. A total of 50 replicates were run per simulation. An average K-score 
and R-F distance was computed for each set of replicates.   

Branch support was determined running 1000 bootstap replicates per simula-
tion. Four different bootstrap consensus trees were estimated with minimum cut-
offs of 63%, 86%, 95% and 98% respectively. The average success of resolution 
[7] was calculated as a weighted average of the four R-F distances resulting from 
the comparison of the respective consensus trees with the reference tree. 

3   Results and Conclusions  

All measures of accuracy and support showed a rapid improvement that was  
subsequently slowed down as an increased number of bands were analyzed  
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(Figs. 1-2). This is due to the fact that, as clades are resolved, the total number of 
newly resolved clades decreases for each further increment in band number. High 
resolution to recover the correct tree topology (R-F distance) was achieved using a 
total of about 300 bands (Fig. 1). In contrast, branch length estimation (K-score) 
was rather unreliable across the entire set of band numbers analyzed and did not 
improve substantially once the amount of about 500 bands was reached.  

Our simulations showed that relatively high bootstrap support values (i.e. ≥ 
70%) for most nodes were reached when sampling as few as 500 bands, but that 
an increase in the number of sampled bands did not necessarily equate to a linear 
increase in support values (Fig. 2).  Bootstrap support values ≥ 98% for all nodes 
required double number of bands, from 500 to 1000.   
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Fig. 1 K-scores and R-F distances resulting from the comparison among the true and esti-
mated minimum evolution trees based on different numbers of AFLP bands. ∆ K-score and 
R-F distance for a 1Kb long DNA sequence 
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Fig. 2 Bootstrap support. Topological congruence between the reference and estimated con-
sensus trees using different minimum cutoff values and number of sampled AFLP bands 

To better visualize the relationship between K-score, R-F distance and tree ac-
curacy, we plotted the reference tree and the estimated AFLP-based trees (Fig. 3). 
External nodes have a higher bootstrap support than deeper nodes, and nodes 
achieving 90% bootstrap support were more responsive to increasing the number 
of sampled bands. Our in silico simulations provide new insights into the phy-
logenetic utility of AFLPs and suggest that moderate amounts of bands (on the 
range of 300-600) are necessary to recover most clades with high support values.  
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SequenceReference

AFLP AFLP- Bootstrap

 

Fig. 3 Reference and estimated trees using DNA sequences 1 Kb long (Sequence) and 
AFLP characters based on 300 bands (AFLP) and 1000 bands after bootstrap re-sampling 
(AFLP-Bootstrap). Numbers at the nodes indicate the percentage of bootstrap support 
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Employing Compact Intra-genomic Language 
Models to Predict Genomic Sequences and 
Characterize Their Entropy 

Sérgio Deusdado* and Paulo Carvalho 

1 

Abstract. Probabilistic models of languages are fundamental to understand and 
learn the profile of the subjacent code in order to estimate its entropy, enabling the 
verification and prediction of “natural” emanations of the language. Language 
models are devoted to capture salient statistical characteristics of the distribution 
of sequences of words, which transposed to the genomic language, allow model-
ing a predictive system of the peculiarities and regularities of genomic code in dif-
ferent inter and intra-genomic conditions. In this paper, we propose the application 
of compact intra-genomic language models to predict the composition of genomic 
sequences, aiming to achieve valuable resources for data compression and to con-
tribute to enlarge the similarity analysis perspectives in genomic sequences. The 
obtained results encourage further investigation and validate the use of language 
models in biological sequence analysis. 

Keywords: language models, DNA entropy estimation, genomic sequences  
modeling. 

1   Introduction 

Language models aim to capture the context of a language based on the study and 
computation of the probabilities of its patterns [1],  developing models to infer the 
rules behind the successions of its segments, i.e. words, n-grams, sounds, codons, 
etc. Hidden Markov Models (HMMs) also rely on probabilistic models and are 
widely used in bioinformatics for gene prediction and profiling of sequences [2]. 
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Entropy measures of DNA sequences estimate their randomness or, inversely, 
their repeatability [3]. In the field of genomic data compression, fundamentally 
based on the comprehension of the regularities of genomic language and entropy 
estimation, language models appear as a promising methodology to characterize 
the genomic linguistics and to provide predictive models for data compression 
[4][5] [6], as well as revealing new approaches for sequence similarity analysis 
[7]. Statistical language models are widely used in speech recognition [8] and 
have been successfully applied to solve many different information retrieval prob-
lems [9]. A good review on statistical language modeling is presented by 
Rosenfeld in [10]. 

Currently, the Biological Language Modeling Toolkit is a good example of the in-
terest of this field of investigation, developed by the Center for Biological Language 
Modeling. This toolkit consists on a compilation of various algorithms that have been 
adapted to biological sequences from language modeling, and specifically it is ori-
ented to uncover the "protein sequence language". The toolkit is publicly available at 
the following URL: http://flan.blm.cs.cmu.edu/12/HomePage. 

2   Language Models 

Language modeling is the art of determining the probability of a word sequence 
w1...wn, P(w1...wn) [10]. This probability is typically divided into its component 
probabilities: 

   P(w1...wi) = P(w1) × P(w2|w1) × ... × P(wi|w1...wi−1) 
                                                                                                                                (1) 

= ∏
=

n

i 1

P(wi | w 1, w2 , ..., w i-1 ) 

 

Since it may be difficult to compute the probability P(wi|w1...wi−1) for large i, it is 
typically assumed that the probability of a word depends on only the two previous 
words. Thus, that trigram assumption can be written as: 

                                          P(wi|w1...wi−1) ≈ P(wi|wi−2wi−1)                                    (2) 

The trigram probabilities can then be estimated from their counts in a training cor-
pus. Let C(wi−2wi−1wi) represent the number of occurrences of wi−2wi−1wi in our 
training corpus, and similarly for C(wi−2wi−1). Then, we can approximate: 

                                P(wi|wi−2wi−1) ≈ C(wi−2wi−1wi) C(wi−2wi−1)                            (3) 

The most obvious extension to trigram models is to move to higher order n-grams, 
such as four-grams and five-grams. In genomic language modeling is usual to 
consider codons as words. Codons are three-letter words from the quaternary ge-
nomic alphabet {A, C, G, T}, resulting only 64 possible combinations. Thus,  
genomic language models generally use higher order n-grams to improve their  
efficiency. 

Smoothing techniques are used to avoid zero probability n-grams which may 
occur from inadequate training data [11]. In fact, rare trigrams should also  
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integrate the predictive model; therefore its probability, even low, must be greater 
than zero. On the other hand, smoothing affects high probabilities to be adjusted 
downward. Not only do smoothing methods generally prevent zero probabilities, 
but they also attempt to improve the accuracy of the model as a whole. 

The most commonly used method for measuring language model performance 
is perplexity. In general, the perplexity of a n-gram language model is equal to the 
geometric average of the inverse probability of the words measured on test data: 
 

                                                 

n

n

i ii wwwP∏
= −1 11 )...|(

1

                                           
(4) 

 

Low perplexity of the model means high fidelity predictions. A language model 
assigning equal probability to 100 words would have perplexity 100. An alterna-
tive, but equivalent measure to perplexity is entropy, which is simply log2 of  
perplexity. 

3   Developed Work 

The developed work corresponds to a framework for entropy estimation and anal-
ysis of DNA sequences based on cooperative intra-genomic compact language 
models. These models will obtain a probability distribution of the next symbol at a 
given position, based on the symbols previously seen. Based on the experiments of 
Cao et al. [12], we choose to divide our approach into global and local models, 
combining their contribution to improve the efficiency of the multiparty predictive 
model. While global models consider the full extension of the analyzed sequences, 
local models only capture the probabilistic properties of a limited number of bases 
preceding the base(s) to predict, considering if necessary a variable displacement. 

Our aim was to take advantage of the successive probability present mainly in 
repetitive regions of DNA sequences, as well as in non-repetitive regions where a 
stochastic model can be efficient too. 

We used a backoff n-gram language model [13][14] implemented with arrays 
of values representing the most probable chain of codons to occur after each one 
of the 64 possible codons. Our models were not trained based on a corpus because 
the intention was to apply, subsequently, the resulting framework to an on-line ge-
nomic data compression algorithm. In this sense, the resulting compressed file 
must be self-contained, as the recalculation of probabilities in the decompression 
process relies only on the data included in the compressed file. Thus, the need for 
compact models, especially the global model because it is integrated in the com-
pressed file. The local models are adaptive and evolve periodically as they receive 
new input from the history of the sequence already viewed, i.e. the significant por-
tion of the sequence preceding the point of prediction. In this way, we produce  
intra-genomic and very compact models, expecting not to compromise the proc-
essing time of the predictive algorithm and, additionally, looking forward to in-
clude the essential part of the models in the resulting compressed file to help the 
initial predictions, when history is not available. 
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Experimental results, using a typical set of DNA sequences (see Table 3)  

used in DNA compressors as test corpus, showed that ten-grams/codons corre-
sponds to the most appropriated order for global models, considering the tradeoff 
between model performance and computational cost. For local models, we used 
order twenty, not codon based but nucleotide based. Each model presents its pre-
diction supported by an associated probability, reflecting the model’s confidence. 
At the end, all local and global models are pooled to elect by a voting system the 
definitive prediction to be emitted. Independently of the model that produces the 
prediction, any prediction is just a symbol. Hence, if the prediction is made by a 
codon-based model only the first nucleotide of the predicted codon is considered. 

3.1   Local Models 

Local models use single letters (nucleotides) instead of codons and are of order 
thirty.  Being adaptive, they are modified with the latter knowledge obtained from 
the already predicted - and eventually corrected - sequence. The local models used 
in our work are based on 1000 nucleotides context, not immediately before the nu-
cleotide to predict but forming a window slid back in the sequence. We used two 
versions based on different displacements, one with 500 bp displacement and the 
other going backward 3000 bp. We used different types of local models to enlarge 
the possibilities of our prediction system, trying to take advantage on the best 
available knowledge, such as being aware of that most repetitions occur hundreds 
or thousands of bp after its last occurrence. Considering that some DNA regulari-
ties occur in the reverse complementary form, the so-called palindromes, we used 
complimentary local models based on reverse complementary history. 

3.2   Global Models 

Global models use codons and gather the probabilistic study of ten-grams. A glob-
al model based on the reverse complementary sequence was also produced. Global 
models are meant to be compact, as they will integrate a future compressed file of 
the DNA sequence. Our global models are based on tables, containing the most 
probable succession of codons to occur after each one of the 64 possible codons. 
Without increasing data complexity, it is possible to calculate global models for 
the three frames of a sequence. In this way, frame 1, 2 and 3 variants were also 
considered. These models can be consulted also for subsequences of codons, not 
necessarily initiated at order 0, using a backing off strategy. An example of a 
global model, upon analysis of the frame 1 of a sequence, is shown in Table 1. 

Table 1 Example of a compact global model considering ten-grams 

Order 
Frame 1 

0 1 2 3 4 5 6 7 8 9 10 

Code Codon Sucession of codons with highest probability 

1 AAA 1  4 4 16 63 29 32 1 1 2 34 

2 AAC 2  12 12 57 23 44 43 5 4 1 31 

… … … … … … … … … … … … … 

63 GGT 63  52 2 64 4 11 13 24 6 12 59 

64 GGG 64  11 13 24 6 12 59 17 55 32 4 
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3.3   Prediction Process 

The test prototype considers six different models, described as follows: 

M1 – regular global model; 
M2 – global model based on the reverse complementary sequence; 
M3 – regular local model considering 1000 previous symbols context and a re-
tro-displacement of 3000 bases; 
M4 – reverse complementary local model considering 1000 previous symbols 
context and a retro-displacement of 3000 bases; 
M5 – regular local model considering 1000 previous symbols context and a re-
tro-displacement of 500 bases; 
M6 – reverse complementary local model considering 1000 previous symbols 
context and a retro-displacement of 500 bases. 

 

A model emits a prediction based on order n when it contains the knowledge of a 
probable n-gram equal to the one at the end of the analyzed portion of the se-
quence. When there is a conflict between predictions of equal order, global models 
have priority and their predictions prevail as they derive from the complete se-
quence. If a global model produces a prediction of order ≥ 3 then the local models 
predictions are ignored. Each model votes for its predicted symbol, and in the end 
a probabilistic distribution emerges from a voting system where global models 
have more weight on final results than local models. Votes from local models are 
equal to the order used in the prediction, whereas the global models’ orders used 
in the predictions are trebled. Table 2 shows an example of the election of a final 
prediction and its probability distribution based on the following individual pre-
dictions cases: 

M1 – predicted A with order 5(x3); 
M2 – predicted C with order 1(x3); 
M3 – predicted T with order 3; 
M4 – predicted A with order 1; 
M5 – predicted C with order 2; 
M6 – predicted T with order 1; 
 

To prevent zero probability, non-voted symbols receive one vote. 

Table 2 Demonstration of the voting system used to achieve the probability distribution 

Votes by Model 
Prediction 

M1 M2 M3 M4 M5 M6 
Total 

Probability distri-
bution 

A 15   1   16 62% 

C  3   2  5 19% 

T   3   1 4 15% 

G       1 4% 
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4   Experimental Results 

A test prototype was implemented to combine the predictions from the models de-
scribed in the previous section in order to assess the predictive capability of our 
framework. The code was written in C language and compiled using gcc version 
3.4.2, configured for maximal code optimization. Tests ran on a system based on Intel 
Pentium IV – 3,4GHz, 8KB L1 + 512 KB L2 cache, with 1GB RAM-DDR and a 250 
GB HD. We tested our prototype on a dataset of DNA sequences typically used in 
DNA compression studies. The dataset includes 11 sequences: two chloroplast ge-
nomes (CHMPXX and CHNTXX); five human genes (HUMDYSTROP, 
HUMGHCSA, HUMHBB, HUMHDABCD and HUMHPRTB); two mitochondria 
genomes (MPOMTCG and MTPACG); and genomes of two viruses (HEHCMVCG 
and VACCG). 

Table 3 contains the results obtained, considering the percentage of  
predictions that matched the corresponding symbol in the original sequence. 

Table 3 Experimental results 

Sequence Length(bp) % of correct predictions 

CHMPXX 121.024 29 

CHNTXX 155.844 30 

HEHCMVCG 229.354 27 

HUMDYSTROP 38.770 26 

HUMGHCSA 66.495 37 

HUMHBB 73.323 28 

HUMHDAB 58.864 29 

HUMHPRTB 56.737 28 

MPOMTCG 186.608 27 

MTPACG 100.314 27 

VACCG 191.737 28 

Average 116.279 29 

 
Considering the quaternary alphabet and carrying out a random prediction, it 

will be expectable, in theory, to obtain 25% of correct predictions, on average. 
Comparatively, the obtained results exhibit 29% of prediction correctness on aver-
age. However, the obtained results are satisfactory considering only intra-genomic 
study and the reduced size of the used models; moreover the high level of entropy 
inherent to DNA sequences justifies the quality of the results. HUMGHCSA is the 
sequence where our predictive model performed better because it is, within the 
tested set of sequences, the one with lower entropy, i.e. high redundancy, as we 
may confirm in the literature [4][15]. 
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5   Conclusions and Future Work 

Experimental results demonstrate a linear correlation facing the entropy of each 
tested sequenced based on the results of existing DNA data compressors 
[4][3][12][15]. Sequences with higher levels of entropy are more difficult to mod-
el and hence our models get modest results on their analysis.  Global models cap-
ture the most significant patterns of the sequence and perform generally better. 
Local models revealed low utility in entropy estimation but they are important to 
complement predictions. Different sequences may need proper adjustments of the 
extension and the displacement of the local models to optimize their prediction 
capability. We believe that it would be useful to determine the profile of the se-
quence in advance in order to adaptively adjust the local model’s parameteriza-
tion. This will be addressed in future developments. 

Our major goal was to test the potential and efficiency of language models as a 
complementary compression method for biological data compression, for instance, 
to complement dictionary based techniques. Consequently, our focus was mainly 
in regions of the sequences where linear patterns are sparse or exist repeatedly but 
with reduced extension. Additional work is needed to optimize all the models,  
especially the local ones, but the obtained results encourage further investigation. 
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Structure Based Design of Potential Inhibitors 
of Steroid Sulfatase 

Elisangela V. Costa, M. Emília Sousa, J. Rocha, Carlos A. Montanari,  
and M. Madalena Pinto* 

1 

Abstract. The enzyme steroid sulfatase (STS) activity is high in breast tumors and 
elevated levels of STS mRNA expression have been associated with a poor prog-
nosis. Potent STS irreversible inhibitors have been developed, paving the way to 
use this new type of therapy for breast cancer. Synthetic small molecules 
belonging to a focused library of inhibitors of tumor cell growth already obtained 
and new molecules planned to be reversible inhibitors of STS were docked into 
STS using the program AutoDock 4. To guide the docking process of the select 
ligands through the lattice volume that divides the receptor's area of interest, a full 
set of grid maps was built using the program AutoGrid. Some of the new designed 
small molecules showed calculated binding affinity for STS presenting ΔG values 
in a range of -11.15 to -13.07 kcal.mol-1. The synthesis of the most promising STS 
inhibitors, based on these results, is in progress. 

1   Introduction 

The highest frequency of breast cancer is observed in postmenopausal women, as-
sociated with high levels of peripherical estrogens produced in situ. The enzyme 
steroid sulfatase (STS) is responsible for conversion of inactive sulfate-conjugated 
steroids to active non-conjugated forms (Reed et al. 2005). This phenomenon 
plays a crucial role in the development of the breast cancer hormone-receptor-
positive.  
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STS inhibitors can be classified as reversible and irreversible. Most of the re-
versible inhibitors are substrate- or product-based, feature a steroid skeleton, and 
are generally less potent than the irreversible blockers (Nussbaumer and Billich 
2004). Attempts to design nonsteroidal STS inhibitors have revealed the benzo-
phenone-4,4′-O,O-bis-sulfamate (BENZOMATE) as a potent STS irreversible in-
hibitor (Hejaz et al. 2004). Structure–activity relationship studies showed that the 
carbonyl group is pivotal for activity and also that the bis-sulfamate moiety is re-
sponsible for the irreversible mechanism of action. 

Until very recently the field has been dominated by irreversible, arylsulfamate-
based inhibitors, although a stable, potent reversible inhibitor should be less prob-
lematic for development. The main reason apparently is that the inhibitor design 
was hampered by the lack of the 3D structure of STS and that the discovery of 
novel inhibitor types has been limited to high-throughput screening (HTS). None-
theless, the structure of STS has already been determined at 2.60 Å resolution by 
X-ray crystallography (Hernandez-Guzman et al. 2003).  

These facts led us to investigate potential STS reversible inhibitors by struc-
ture-based design (SBS), with a benzophenone and a xanthone scaffold (Figure 1). 
The SBS is a molecular docking process that takes small molecule structures from 
a database of existing compounds (or of compounds that could be synthesized), 
and docks them into the protein-binding site, which involves the prediction of 
ligand conformation and orientation (or posing) within the target (Reich et al. 
1992).  

 

Fig. 1 Strategy used in this work 

In order to proceed with these kinds of studies, the strategy used was the dock-
ing of compounds with a benzophenone and a xanthone scaffold provided of a 
significantly similarity in their structure to BENZOMATE (Figure 1). So, small 
molecules obtained in our group which have been already described as tumor cell 
growth inhibitors (Pedro et al. 2002, Sousa et al. 2002, Castanheiro et al. 2007, 
Sousa et al. 2009), as well as new benzophenone/xanthone derivatives designed to 
be reversible inhibitors of STS, i.e., without the sulfamate group, were docked into 
STS. The synthesis of the designed xanthones which showed high affinity for STS 
was already initiated. 
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2   Docking Studies 

An automated docking method, AutoDock 4 (Morris et al. 1998, Morris et al. 
2009), was used that predicts the bound conformations of flexible ligands to mac-
romolecular targets in combination with a new scoring function that estimates the 
free energy change upon binding. AutoDock 4 program allows fully flexible 
modeling of specific portions of the protein, in a similar manner as the flexible 
ligand (Morris et al. 2009) only applied for flexible designed molecules that 
therefore have potentially a reversible mode of action and not for docking of co-
valently-attached complexes, irreversible ones. AutoGrid calculated the non-
covalent energy of interaction between the receptor and a probe atom located in 
the different grid points of a lattice that divides the receptor's area of interest, the 
active site, in a grid box. The region to be explored was chosen and delimited by 
a three-dimensional box so that all important residues forming the active site 
could be taken into consideration during the docking process (red-colored region 
on Figure 2). 

 

Fig. 2 Grid box 

Docking using AutoDock 4 allowed the prediction of the bound conformations 
of flexible ligands to the macromolecular target. For instance, a xanthone was 
docked into STS with a good value of ΔG=-12.50 kcal.mol-1 and showed to be 
well accommodated by a variety of hydrophobic residues such Phe, Val and Leu, 
which are predominant in STS active site. Moreover, the predicted structure for 
the ligand-receptor complex suggests two hydrogen bond interactions involving 
Arg98 and carbonyl group of xanthone scaffold (Figure 3). The cluster analysis 
shown in Figure 4 of the docked xanthone demonstrates that probably the confor-
mation adopted is the one with a value of ΔG = -12.50 kcal.mol-1 (red colored). 

The 61 compounds belonging to a focused library of inhibitors of tumor cell 
growth already obtained were docked into the STS. The respective values of ΔG 
were determinate in a range of –5.39 to –9.40 kcal.mol-1. Two potent inhibitors 
against MCF-7 breast adenocarcinoma with the lowest GI50 values of 6.0 and 21.9 
µM were associated with favorable ΔG values (-8.58 and -6.40 kcal.mol-1, respec-
tively). Some of the new designed xanthones/benzophenones showed high affinity 
for STS with ΔG values in a range of -11,15 to -13.07 kcal.mol-1. It is possible to 
observe in Figure 5 the high shape complementarities of two designed molecules 
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Fig. 3 Interactions suggested by the predicted 
structure for the ligand-receptor complex 

   Fig. 4 Cluster analysis of the docked 
xanthone 

 

Fig. 5 Superimposition of the best conformations of two molecules docked 

with the buried active site of STS. The molecules can adopt conformations that are 
able to fill the whole cavity and prevent the substrate to access to the catalytic 
residues. 

3   Synthesis 

The synthesis of the designed molecules associated to the best results was initiated 
according to conditions in Figure 6. The coupling reagent, TBTU (O-
(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate), often used 
in the peptide synthesis, was applied in the esterification of three carboxylic acids 
with 3,6-dihydroxyxanthone to afford the corresponding esters (Figure 6A). The 
introduction of bulky groups was also performed in order to obtain more two de-
rivatives (Figure 6B).  



Structure Based Design of Potential Inhibitors of Steroid Sulfatase 155
 

 
Fig. 6 Ongoing synthesis of new xanthone derivatives potential inhibitors of STS 

4   Conclusions and Future Work 

Some molecules synthesized in our group already described as tumor cell growth 
inhibitors were associated to favorable ΔG values. It is expected that those ones 
might inhibit the tumor cell growth presumably by inhibiting STS. The STS activ-
ity of these compounds and the new compounds with favorable ΔG values will be 
assessed experimentally in the STS assay. We expect that the virtual screening al-
lied to the structure-based design provides new STS reversible inhibitors belong-
ing to xanthone/benzophenone families.  
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Agent-Based Model of the Endocrine Pancreas 
and Interaction with Innate Immune System 

Ignacio V. Martínez Espinosa, Enrique J. Gómez Aguilera,  
María E. Hernando Pérez, Ricardo Villares, and José Mario Mellado García 

1 

Abstract. In the present work we have developed an agent-based model of the in-
teraction between the beta cells of the endocrine pancreas and the macrophages of 
the innate immune system in a mouse. The aim is to simulate the processes of pro-
liferation and apoptosis of the beta cells and the phagocytosis of cell debris by 
macrophages. We have used data from the literature to make the model architec-
ture and to define and set up the input variables. This model obtains good ap-
proximations to the real processes modeled and could be used to shed light on 
some open questions about phagocytosis, wave of apoptosis in the young mice, 
growing of the beta cell mass and processes that could induce the immune  
response against beta cells related to type 1 diabetes. 

1   Introduction 

Diabetes mellitus is a metabolic imbalance characterized by high levels of glucose 
caused by a deficiency in the secretion or the action of insulin. Type 1 diabetes is 
the result of the destruction of the cells in the endocrine pancreas that secrete insu-
lin (the beta cells) inside Langerhans islets caused by an immune attack (autoim-
mune response) against them. The treatment consists of infusion of exogenous  
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insulin in order to control glucose levels depending on food intake [1]. Some  
efforts nowadays are focusing on creating new therapies to solve the immunologi-
cal problem and the present work is an approach on applying computational mod-
els to this. A model of a real system can be used to comprehend the entire or part 
of the processes, to predict actions of the system depending on stimuli and to  
control those stimuli or inputs knowing the system responses [2]. The in-silico ex-
periments would be an example about the feature of prediction. Agent-based mod-
els like the one that we propose in this paper are a good approach to cell systems 
because they are composed of discrete elements with particular actions that inter-
act with each other generating a complex behavior [3]. Agent-based models have 
been used for modeling different problems related to cellular systems and the  
immune system like the one we propose [4, 5, 6, 7, 8]. 

The autoimmune response against beta cells needs the loss of control in differ-
ent steps. The first step is the activation of the innate immune system by the beta 
cells [9]. This stimulus can be provoked by the necrotic death of beta cells or the 
apoptotic death followed by a secondary necrosis [10]. The second step is the an-
tigen presentation to T helper lymphocytes (CD4+) so there must be autoreactive 
lymphocytes to beta cell self-antigens [9]. And the third step consists of a failure 
of the peripheral tolerance mechanisms mainly due to a lack of regulatory CD4+ 
lymphocytes action [11]. The present work focuses on the first step, with the  
proliferation, apoptosis and growing number of the beta cells. 

Beta cells in the pancreas carry out proliferation when there’s need to maintain 
or increase the number of cells and apoptosis when some cells need to be substi-
tuted. There’s a process called wave of apoptosis which implies a big loss of beta 
cells by apoptosis around the time of weaning in mice [12]. This process of beta 
cell apoptosis has been proposed as the first moment of autoimmune stimulation 
[12, 13]. A feature detected in innate immune system that is differential in diabetic 
mice is reduced macrophage phagocytosis rates [13]. There are mathematical ap-
proaches to model these first interactions among beta cells and the innate immune 
system [13]. The present work is a contribution to integrate these characteristics of 
the beta cells in the pancreas and the first processes of the type 1 diabetes using an 
agent-based approach with the abstraction of 1 cell – 1 agent. 

2   The Model 

2.1   Overview 

The model simulates a fragment of the pancreas, defined by an initial volume, Vc. 
This simulated compartment is composed of a number of islets of Langerhans that 
will be containers of beta cell agents and macrophage agents and manage the in-
flux and efflux of agents. Time is represented as discrete entity. The agents will 
have different states. Beta cell agent can be on 4 different states: resting, prolifer-
ating or carrying out the mitosis process, apoptotic and necrotic. The total number 
of the beta cell agents in each state in the whole model will be denoted as Br, Bp, 
Ba and Bn respectively. Bt=Br+Bp will represent the total amount of functional beta 
cells in the compartment. Macrophage agent’s states are 2: resting and activated, 
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and the total number of them will be denoted as Mr and Ma. Those numbers of 
agents will vary during the simulation time and will be taken into account as re-
sults of the model. All agents can access population numbers and macrophage 
agent can set a beta cell agent which is inside the same islet to be eliminated from 
the simulation, emulating phagocytosis. The simulation time emulates the natural 
time of the mouse life since birth. All the agents make their actions in each time 
step and the interval between steps will be denoted as ΔT. Agent actions are decid-
ing to proliferate, phagocyte, life time discount, etc and will be explained further. 
No agent-based modeling platform was used, the model was implemented directly 
in java and the graphical results displayed using MatLab. Next, we’ll explain the 
different components of the model and the associated input parameters. 

2.2    Compartment and Langerhans Islets 

The initial sizes (in cell number) of the Langerhans islets in the compartment will 
be defined by the Weibull probability distribution that approximates the real size 
distribution [14]. The density function of this distribution is: 
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Where γ is called the shape parameter and η is the scale parameter. The result of 
the distribution is s, a measurement of islet volume by the beta cell number, n: 
n=s3. γ doesn’t vary much during time and we take the estimated in [14] as 1.64. η 
is based on the value for adult mice: 10.15 according to [14]. If the mean islet size 
is composed of 1800 beta cells in adult and the beta cell number is proportional to 
body weight after wave of apoptosis [15], the total beta cell loss during this proc-
ess is 60% and the ratio of average weight of newborn and adult mice is 
1.25g/25g=0.05 [16], we estimate the mean islet size for newborn mice as 
0.05·1800/(1-0.60)=225 beta cells. The mean size using the Weibull function is 
n=η3·Γ(1+3/γ), using n=225 and γ=1.64, the value of η is approximately 5. 

We take the volume of a beta cell (Vb) as inverse of beta cell density in an islet, 
Vb = 1/(4·108 cells/ml) = 2.5·10-9 ml [13]. Initial beta cell density (Di) in the pan-
creas is estimated by de 1% of the volume in adults [15]: 0.01·4·108 cells/ml=4·106 
cells/ml, taking that the density in newborn is 3.5 times larger than in adults for 
humans [17] and assuming for mice similar values, the initial density is 3.5·4·106 
cells/ml = 14·106 cells/ml of pancreatic volume. 

The wave of apoptosis will be defined as a function of time of the proportion of 
beta-cell dead in each time step. We assume that the 60% of the beta cells die dur-
ing the wave with a peak rate of 9% per day around the 15th day of life [12]. We 
approximate a Gaussian outline for the function of the wave and we have this: 
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We use average mouse body weight from newborn to adult Mbw [16] (fig. 1.B). 
The pancreas mass, Pm, has been estimated as 1% of body weight [18]. 

Number of beta cells to maintain in the compartment (Bman): This is the number 
that the beta cells agents of the model will need to reach at each time step by un-
dergoing cell division. It’s calculated as Bman = Bt0 · (Mbw/Mbw0) · (1 – WI), where 
Bt0 is the initial number of functional beta cells in the compartment and Mbw0 is the 
initial average mice body weight (1.25g). 

2.3   Beta Cell Agent 

The characteristics of the beta cell agent are the life span since it’s created as a re-
sult of mitosis until it suffers apoptosis, mitosis duration, proliferation dynamics 
and duration of apoptotic and necrotic debris. 

We estimate for mice in 50 days of mean life span [15] and with an exponential 
probability distribution. Mitosis duration is about 6 hours [15] and cell cycle time 
for a beta cell is 14.9 hours [15] so there’s 14.9–6=8.9 hours of refractory time. 

Proliferation dynamics is based on the number of Bman to maintain at each time 
step. All the new beta cells produced will come from the mitosis of the previous 
[19, 20] and the probability of entering in mitosis of a beta cell is independent of 
the others in the same or different islets [21]. This dynamics is modeled as a prob-
ability of entering in mitosis, pm, in each time step. This probability is separated in 
two addends: A basal probability that would maintain the beta cell number without 
gains or losses: pb. And a growing probability, pg, if Bman exceeds Bt. pm = pb + pg, 
where pb is the result of inverse of life span scaled by ΔT: pb = (1/BL) · ΔT; and pw 
is calculated by the unitary difference between Bman and Bt scaled by ΔT too: pw = 
[(Bman – Bt)/ Bt ] · ΔT. There’s a maximum for this probability for limiting the % of 
beta cells in mitosis. In [22] they kill 75% of the beta cells of a mouse at 5 weeks 
of age. They calculate de % of beta cells in mitosis in these mice (8.5%) and con-
trols (2%). The probability of proliferation is 8.5/2 = 4.25 times bigger. If the rate 
of beta cell proliferation per day at 5 weeks of age is 5-7% [15] (we take 6%, 
6%/2%=3 times bigger than the probability of finding a mitotic cell with the pro-
cedures of [22]), then the maximum proliferation rate per day will be 3·8.5% = 
25.5% and approximated to 25.5%·ΔT per time step. Finally, duration of apoptotic 
debris before suffering secondary necrosis is 2 days [10] and duration of necrotic 
debris is estimated in our model to 10 days. 

2.4   Macrophage Agent 

Firstly, there’s a macrophage influx rate for reaching the islets. The rate used in 
[13] is Mi=50000 macrophages/(ml·day) but this rate in our model is underesti-
mate if we calculate the influx for each islet applying the islet volume (Vis) as 
number of beta cells multiplied by Vb. Instead of this we assume a volume wider 
that double of the islet radius (10 times Vis) and we take absolute macrophage in-
flux as 10 · Mi · Vis. We use the estimated mean life span inside the volume (Mv in 
our case) by [13] as a mean of 10 days with exponential probability distribution. 
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The phagocytosis dynamic is modeled as a rate (Pr) of dead beta cells engulfed 
per unit of time. This rate is not constant because it is know that phagocytosis is 
enhanced after previous debris intakes [13] so we model this rate as a function of 
an activation level (Al) and its value will be among a minimum (Pr_min) and a max-
imum (Pr_max). Pr = Pr_min + pact · Al, where pact is the parameter that relates linearly 
Al with Pr. In [23] they find that the maximum Pr is reached after first engulfment. 
Al increases one unit per engulfed, then pact = Pr_max – Pr_min. 

The deactivation rate has an exponential decay of 0.4 per day (Ma = Ma0·e
–0.4t) 

[23] so we assume a loss of Al with the same exponential decay and we consider 
activated macrophage when its Al is over e–1  and resting when it is lower. In [23] 
and [13] they determine a basal phagocytosis rate of 2·10-5 ml/(cell·day) and a 
maximal phagocytosis rate of 5.10-5 ml/(cell·day) for BALB/c mice (healthy mice) 
and a basal and maximal phagocytosis rate of 1·10-5 ml/(cell·day) for NOD mice 
(diabetic). Scaling to 4·108 beta cells/ml [13] we have for a BALB/c macrophage: 
Pr_min=8000 cells/day, Pr_max=20000 cells/day and pact=12000 cells/(day·Al) and for 
a NOD macrophage: Pr_min=4000 cells/day, Pr_max=4000 cells/day and pact=0 
cells/(day·Al). The density 4·108 cells/ml includes all the beta cells so the macro-
phages contact with Pr cells/day and engulf only the apoptotic or necrotic cells, 
marking them for removing from the islet. Maximum number of engulfed cells is 
7 per macrophage and the digestion rate is 25 cells/day [23]. 

3   Results and Discussion 

Apart from the number of agents in different states and Bman, we calculate other 
rates: percent of beta cells in mitosis (Bmp=100·Bp/Bt), percent of beta cells that 
proliferates per day (Bpr=100·(Bpn/Bt)·ΔT, where Bpn is the number of new beta cell 
in mitosis in each time step), number of necrotic cells phagocyted (NBnf), total 
number of beta cells in the organism (NBt) and beta cell number per body weight 
(NBm= NBt /Mc). It’s proved that there is no islet neogenesis since early in mouse 
life [19, 20]. For obtaining NBt, in our model, we assume that there are no new is-
lets created after birth, then, the whole amount of islets in the pancreas is propor-
tional (K) to the initial volume of the compartment (Vc) and the initial volume of 
the pancreas (Vp0): K = Vp0/Vc, and the same proportion applies for beta cell num-
ber. We assume that the density of the pancreas is nearly the water density 
(dp=1g/ml), then Vp0=Pm0/dp (Pm0 is the initial pancreatic mass), and finally, the in-
itial NBt=K·Bt0. We have run simulations with this model for a life length of 50 
days and ΔT=1 hour. Vc=10-4 ml so Bt0=Di·Vc=1400 cells. The results are presented 
in figure 1. The parameters used for phagocytosis are taken for NOD except in 
figure 1.E that are taken for NOD and BALB/c. 

Bman (fig. 1.A) present a profile with a phase of growth after birth, a plateau 
around the days of the wave of apoptosis and finally another phase of growing. 
This profile of Bman is proportional to the profile of NBt (fig. 1.B) and simulates 
the real growth dynamics of beta cell mass in the real pancreas of mice [24] where 
we can see the first growth, the plateau between 10 and 20 days of life with even a 
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Fig. 1 Results. A) Bman (green), Bt (blue), Wp·1000/peak (red). B) Mc[grams]·105 (blue), NBt 
(green). C) NBm. D) Bpr (green), Bmp (blue). E) Mr for NOD (blue), Mr for BALB/c (red), 
Ma for NOD (green) and Ma for BALB/c (cyan). F) Ba (blue), Bn (green), NBnf (red) 

slight decrease, and finally the final growth. This final growth is proportional to 
body weight in the model and it is the same result who researchers find in muridae 
after the first month of life [15, 25]. The proliferative dynamics of beta cells fol-
lows the conditions of independency [21] and non neogenesis [19, 20] in the mod-
el and Bt value follows Bman value (fig. 1.A). The quantification of the rate Bpr in 
real muridae finds values of 18% at birth, 7% at one month of age and 2-3% dur-
ing adulthood [15]. In our model (fig. 1.D) we can see this rate, for the same  
moments as 22%, 5% and 2-3%, very similar values that reproduce the real prolif-
eration dynamics. This decreasing proliferation rate with age is also seen in [12] 
but with lower values at birth, and if we take into account some result that report 
percents of beta cells in mitosis using different techniques (BrdU [25] and Ki67 
antibody [22] staining protocols) for 1 month of age the results are consistent with 
the model too. The values of NBm after apoptosis wave are high estimated com-
pared with real studies: about 50000 beta cells per gram in the model (fig. 1.C) 
and around 30000 cells/g in [18, 22], those studies find 0.06-0.07 mg of beta cell 
mass per gram of body weight and if we assume density of 1g–1ml: 0.07·10-3/Vb is 
about 30000 cells/g. This difference could come from overestimate Di. The loss of 
beta cell mass when it’s the onset of type 1 diabetes is 40% for adults and 85% 
near birth in humans [17]. A minimum threshold of NBm has to exist to maintain 
the levels of insulin per gram of body weight. Extrapolating these findings to our 
mouse model, the (100%-40%) of our beta cell mass per gram for adults is about 
50000·0.6 = 30000, it would be the NBm  threshold for diabetes. At birth, NBm is 
around 130000 cells/g. To reach the threshold (30000 cells/g), the loss of beta cell 
mass would need to be of 77%, a value quite similar to the 85% found in [17]. 
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The macrophage profile found for the different phagocytosis rates for BALB/c 
and NOD mice shows a high influx for the last one with more number in activated 
state (fig 1.E), consistent with [13] results and supporting [9] theory about higher 
and prolonged activation rates of innate immune system that could even lead to a 
positive feedback of beta cell destruction and immune activation that would lead 
to type 1 diabetes. The amount of Ba present at early ages is higher than in older 
mice, another model result (fig. 1.F) consistent with experimentation [15, 25], and 
a higher NBnf during first weeks, highlighting this period as the more prone to im-
mune activation. 

4   Conclusions 

The model presented achieves the reproduction of beta cell mass increase dynam-
ics, proliferation rates, beta cells in mitosis percent and descent of the number of 
beta cells per body weight. Therefore, this model represents a connection among 
scientific data in the literature. Hence, it can be considered when it comes to make 
estimates where variations of parameters represented by inputs in the model could 
be motif of study or experimentation. 

Furthermore, this model obtains different responses of macrophage influx for 
NOD (diabetic) and BALB/c (healthy) mice depending on phagocytosis rates dur-
ing wave of apoptosis. It also finds more contacts with necrotic debris during early 
life. These results together support the simulation as a predictor of the initials 
events for the development of autoimmune response of type 1 diabetes and present 
the agent-based modeling applied to this pathology as a good tool for comprehen-
sion and prediction of the processes that lead to its onset. 
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State-of-the-Art Genetic Programming for
Predicting Human Oral Bioavailability of Drugs

Sara Silva and Leonardo Vanneschi

Abstract. Being able to predict the human oral bioavailability for a potential new
drug is extremely important for the drug discovery process. This problem has been
addressed by several prediction tools, with Genetic Programming providing some of
the best results ever achieved. In this paper we use the newest state-of-the-art devel-
opments of Genetic Programming, in particular the latest bloat control method, to
find out exactly how much improvement we can achieve on this problem. We show
examples of some actual solutions and discuss their quality from the practitioners’
point of view, comparing them with previously published results. We identify some
unexpected behaviors and discuss the way for further improving the practical usage
of the Genetic Programming approach.

1 Introduction

The success of a drug treatment is strongly related with the ability of a molecule
to reach its target in the patient’s organism without inducing toxic effects. Hu-
man oral bioavailability (indicated with %F from now on) is the parameter that
measures the percentage of the initial orally submitted drug dose that effectively
reaches the systemic blood circulation after the passage from the liver. This parame-
ter is particularly relevant, because the oral assumption is usually the preferred way
for supplying drugs to patients and because it is a representative measure of the
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quantity of active principle that effectively can actuate its therapeutic effect. Being
able to reliably predict the %F value for a potential new drug is outstandingly impor-
tant, given that the majority of failures in compounds development from the early
nineties to nowadays are due to a wrong prediction of this pharmacokinetic parame-
ter during the drug discovery process [3, 4]. Most pharmacokinetics prediction tools
reported in the literature belong to the category of Quantitative Structure-Activity
Relationship (QSAR) models [11]. The goal of such models is to define a quantita-
tive relationship between the structure of a molecule and its biological activity. See
[1, 2] for an updated review of these prediction tools.

Genetic Programming (GP) [6] is a computational method aimed at learning
computer programs that solve specific problems, given their high level specifica-
tions. Basically a search process, GP evolves populations of computer programs,
using Darwinian evolution and Mendelian genetics as inspiration. It undoubtedly
provides some of the most powerful and versatile problem solving algorithms de-
veloped so far, however its practical usage still poses a few challenges. Because GP
uses a variable-length representation for the solutions, the programs are allowed to
grow during the evolutionary process, and it usually happens that their size increases
without a corresponding improvement of fitness. This is called bloat, a serious prob-
lem that can actually stagnate the evolutionary process, besides compromising the
understandability of the provided solutions. From among the many theories explain-
ing the emergence of bloat (reviews in [7, 8]), and the numerous methods attempting
to prevent it (review in [7]), recent theoretical developments led to a new bloat con-
trol technique, called Operator Equalisation (OpEq) [9]. Although still recent and
requiring improvements, OpEq has already proven to be more than just a bloat con-
trol method. It reveals novel evolutionary dynamics that allow, for the first time
after more than 15 years of intense bloat research, a successful search without code
growth.

GP has been used in pharmacokinetics in [5] for classifying molecules in terms
of their %F, and also in [2, 1] for quantitatively predicting %F. These studies have
shown that GP is a very promising approach, in most cases able to provide better
solutions than the other machine learning methods studied. The problem of predict-
ing %F has already been addressed by GP with OpEq [10], where the goal was to
find whether the successfulness of OpEq in benchmark problems [9] would hold
for a hard real-life regression problem. In the present paper we are only marginally
interested in the evolutionary dynamics of the techniques. Instead, we focus our at-
tention on the actual solutions that GP can provide to the problem of %F prediction,
with and without OpEq. We put ourselves in the role of the practitioners and discuss
the achievements from a practical point of view, comparing them with previously
published results. We identify some unexpected behaviors and discuss the way for
further improving the practical usage of GP.

In the next Section we describe the experiments performed in this study. Section 3
reports and discusses the results, and Section 4 concludes.
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2 Experiments

We basically replicate the experiments of [10]. The techniques tested were a stan-
dard GP implementation (StdGP) and the two different versions of OpEq (DynOpEq
and MutOpEq) described in [10]. Being GP a non-deterministic method (meaning
that each GP run may produce a different result), a total of 30 runs were performed
with each technique, to allow for statistic significance. All the runs used popula-
tions of 500 individuals allowed to evolve for 100 generations. The function set
used to build the candidate solutions only contained the four arithmetic operators
+, −, ×, and /. Fitness was calculated as the root mean squared error between
outputs and targets, meaning that the lower the fitness, the better the individual.
To create new individuals, crossover and mutation were used with probabilities
0.9 and 0.1, respectively. Survival from one generation to the other was always
guaranteed to the best individual of the population. For the remaining parameters
consult [10].

We have obtained a set of molecular structures and the corresponding %F values
using the same data as in [13] and a public database of food and drug Administration
(FDA) approved drugs and drug-like compounds [12]. The data has been gathered in
a matrix composed by 359 rows and 242 columns. Each row is a vector of molecular
descriptors values identifying a drug; each column represents a molecular descrip-
tor, except the last one, that contains the known values of %F1. Training and test
sets have been obtained by randomly splitting the dataset: at each GP run, 70% of
the molecules have been randomly selected with uniform probability and inserted
into the training set, while the remaining 30% form the test set. For more details
consult [10].

All the experiments were performed using a modified version of GPLAB2. Sta-
tistical significance of the null hypothesis of no difference was determined with
pairwise Kruskal-Wallis non-parametric ANOVAs at p = 0.01.

3 Results and Discussion

In the following subsections we use the term training fitness to designate the fitness
measured on the training set, and the term test fitness to designate the fitness mea-
sured on the test set (by the same individual, unless otherwise indicated). Although
debatable from a practitioners’ point of view, we use the term best solution to desig-
nate the solution represented by the individual with the best training fitness. We use
the term length of a solution to designate the total number of variables, constants
and operators in the final expression.

1 This dataset, and a lookup table with descriptor acronyms, can be downloaded from,
respectively: http://personal.disco.unimib.it/Vanneschi/bioavailability.txt
http://personal.disco.unimib.it/Vanneschi/bioavailability lookup.txt

2 GPLAB – A Genetic Programming Toolbox for MATLAB, freely available at:
http://gplab.sourceforge.net
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Fitness and Length of Solutions. Figure 1 contains two boxplots. The first one (a)
refers to the best training fitness achieved on the last generation. The second (b)
shows the fitness achieved by the same individual when measured on the test set.
All the differences are statistically significant on the training set, where DynOpEq
is the technique that reaches better fitness, followed by StdGP, and finally Mu-
tOpEq. Remarkably enough, no significant differences are observed on the test set.
However, despite all techniques having similar generalization ability, DynOpEq ex-
hibits a higher variability of test fitness, with two outliers falling outside the plot (as
hinted by the magnitude of the mean value). StdGP and MutOpEq exhibit a more
constrained behavior, although MutOpEq also has one outlier outside the plot.

Figure 2 contains two plots. The first (a) is an unconventional plot that shows
the evolution of the training fitness of the best individual plotted against its length,
median of 30 runs. There is an implicit downwards timeline along the fitness axis.
Depending on how fast the fitness improves with the increase of program length, the
lines in the plot may point downward (south), or they may point to the right (east).
Lines pointing south represent a rapidly improving fitness with little or no code
growth. Lines pointing east represent a slowly improving fitness with strong code
growth. Lines pointing southwest (bottom left) represent improvements in fitness
along with a reduction of program length. We want our lines to point as south (and
west) as possible. As can be seen, both OpEq techniques point down, while StdGP
points mostly right. At the end of the run there is a significant difference between
all the techniques, with StdGP producing the longest solutions, and MutOpEq pro-
ducing the shortest. From [10] we already knew that the lines referring to average
solution length behaved like this. Knowing that the best solution length follows the
same trend reveals that OpEq not only allows a better search for shorter solutions,
but it actually finds them. The second plot (b) shows the evolution of the best so-
lution’s length along the generations, median of 30 runs. Here we can once again
observe the striking difference between StdGP, with its steadily growing solution
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length, and the OpEq techniques with their stabilizing solution length from early in
the run.

Examples of Solutions. So far, the previous results have shown that the solutions
obtained by GP with OpEq are usually shorter than the ones obtained without OpEq.
Now we look at some actual solutions obtained during our experiments. Figure 3
shows some of the shortest best solutions provided in the last generation, by the
three different techniques. These expressions were chosen for being the shortest
after removing the redundant code and performing a symbolic simplification with
MATLAB, and not necessarily the shortest in the raw format returned by GP. From
among the 30 runs, we show three solutions (1,2,3) provided by MutOpEq, one (4)
by DynOpEq, and also two of the shortest best solutions (5,6) provided by StdGP
(and an extra solution provided by DynOpEq, explained later). For each of them
we indicate the technique and run that achieved it, the original length of the raw
expression, and the fitness measured on the training and test datasets.

Comparison with Previous Results. Previous studies on the prediction of %F [1, 2]
have compared the results of different machine learning techniques, with and with-
out prior feature selection, and concluded that some GP techniques can provide the
best results in terms of the fitness measured in the test set. A direct comparison be-
tween these previous results and the present study is not possible, as the experimen-
tal setup was not the same, and the results were reported differently. Nevertheless,
they are our best term of comparison, so we perform a very light comparison.

The previous studies report the solution that performed better in the test set, from
among all the individuals ever created with a standard GP technique, to achieve a
test fitness of 30.13. The best test fitness achieved by any of the other GP techniques
used in that study was 26.01, using linear scaling and ephemeral random constants
[1, 2]. The raw expression of this solution had length 201. We were curious to know
whether, by looking among the fitness values measured on the test set, we would
also find a solution of similar quality. Without doing an exhaustive search, we easily
found a solution with fitness values of 26.43 and 25.62 on the training and test sets,
respectively. Its expression is the last one (7) in Figure 3.

Further Analysis. From the practitioners’ point of view, the last expression of Fig-
ure 3 is visually more complex than the other expressions from the OpEq techniques,
but its good and similar values of training and test fitness make it very appealing in
terms of generalization ability. This solution was created by DynOpEq in run 25,
and we found it in rank 180 among the 500 individuals of the last generation. The
first place in this ranking consisted of a solution with fitness value of 87.62 on the
test set, one of the outliers shown in Figure 1(b). At first, this seemed like a typical
bad case of overfitting, but a closer look revealed an unexpected behavior. At the
end of generation 52 the best solution had fitness values of 27.33 and 26.76 in the
training and test set, respectively. In the next generation the test fitness of the best
individual had “jumped” to 89.07, and it remained around this value for the rest of
the run. In the last generation, the individual ranked 180 is just one of the many
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MutOpEq, run 4, original length 115, training fitness 32.99, test fitness 34.41:

x156 (x30 + x132)
x135

+2x182 +3x171 +
x18 x64

x156
+2x222 +2

x156 x24

x135
+3

x30

x18
+

x171

x184
+

x18 + x100

x92 x186
+

x180

x156
− x80 +

+2x134 −2x91 +
x30 + x132

x24
− x171

(
x64 +

x180

x171

)
x184

−1x73
−1x222

−1 − x30 + x132

x184 x228
+ x230 (1)

MutOpEq, run 21, original length 75, training fitness 27.96, test fitness 32.93:
[

2x2 +
x2

x30
+ x58 − (x6 − x35)x91 + x231

]
x30

−1

(
x2 + x231

x200
+ x143

)−1

+
x30 x45

x149
+

x205

x143
+

+
(

x182 +
x116

x131

)
x219

−1 − x164 (x160 − x219)

[
x200 + x219

−1

(
x110 − x2

x30
− x58

)−1
]−1

(2)

MutOpEq 27, original length 133, training fitness 33.43, test fitness 30.50:

x231 + x227 +
x125

x124 x227
+ x91 x224 +2

x191

x218
+2

x151 x222

x142 x227
+3

x201

x91 x170
+

x142 x164 x97

x222 x224
−5x124 +

x199

x32 x227
+

+
x164

x227 x199
+ x164 x222 x225 − x91 + x5 − x12 − x18 + x191

−1 +2x199
−1 +

x106

x97
(3)

DynOpEq 14, original length 129, training fitness 27.72, test fitness 35.76:

2x38 −
(

8x94 +2x18 +23x28 +
x101

x221
2 +

x182

x221
−2x232 x41 +

x38

x221
− x232 − x26

2x94 + x41 +
x28

x221

)

(x52 − x189 − x28)
−1 +2x26 −3x18 +2x50 + x230 (4)

StdGP, run 8, original length 207, training fitness 27.46, test fitness 30.77:

x17 +

[
1+2

x231

x212 x45
+(2x4 + x231)

(
x9 − x61 − x82

x4

)
(x4 + x30)

−1 + x5 x18

(
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+2x17
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x216
−1x45
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(
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x238

)−1

+ x212 +
x17
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+10x17 +3x30 +
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x17

x18
+

(
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)(
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−1)−1
+
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x4 + x231
+

+
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x216
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x18
+2x211 +2

x17

x216
+5x4 +2x5 +5x37 +4x231

]
x30

−1 − x4 (5)

StdGP, run 12, original length 135, training fitness 28.50, test fitness 30.51:

x45 −
[

x3 + x64 − x46 −
(

x17

x37 x131
− x30 −3x56 + x17

)(
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(
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(
x152
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)
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)
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]
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[
x37
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]−1
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DynOpEq, run 25, original length 153, training fitness 26.43, test fitness 25.62:
(individual ranked 180 in the last generation)[

x37 + x45

(
x161 + x89 − x106 (x133 + x231 − x177)

x89 x133

)−1

(x161 + x23)
−1 +

(x218 + x89 − x210)x45
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+
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)
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(
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Fig. 3 Examples of solutions provided by the different GP techniques. Lookup
table with descriptor acronyms available at http://personal.disco.unimib.it/Vanneschi/
bioavailability lookup.txt
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remnants of the “pre-jump” phase of the evolution. We soon realized this was not
an isolated event, and identified many cases of extreme variability of the test fitness
values along the runs. When the 30 runs are regarded in median terms these varia-
tions go unnoticed, but this is certainly a subject for future investigation. It may not
be the typical overfitting behavior, and can be caused by possible errors in the data,
but the implementation of a method to avoid overfitting, even a simple one like the
early stopping of learning, could prevent good solutions from being lost during the
evolution. Overfitting has not yet been intensively studied in GP, but it is another
problem that needs to be solved in order to allow its practical and reliable usage.

Feature Selection. Many machine learning techniques rely on prior feature selec-
tion to reduce the dimensionality of the search space, but GP is known for perform-
ing automatic feature selection during the search. The process that allows this is
simple: In this particular problem, GP searches the space of all arithmetic expres-
sions of 241 variables. This space contains expressions that use all the variables,
and expressions that use a strict subset of them. There is no reason why an expres-
sion using less than the 241 variables cannot have better fitness than an expression
using all the variables. Given that fitness is the only principle that guides the evolu-
tionary search, GP may return a lower dimensional expression as the best solution
found, thus performing automatic feature selection. So, besides seldom returning the
same solution, GP also rarely chooses the same set of features in two different runs,
particularly in complex high-dimensional problems like the one we are studying.
Promoting the creation of alternative solutions for the same problem has been the
subject of a number of studies, as it potentially enhances creativity and innovation,
desirable properties in many application domains [14].

Table 1 lists the features used to construct each of the solutions shown in Figure 3.
Not many features appear in more than one solution (indicated in bold). This small
set of example solutions is representative of the entire set of solutions generated
for this problem. From the 241 features available to predict %F, all the techniques
select more or less the same number of features, but not the same ones. We could not
identify a core of preferred features, not even a single feature that is always selected

Table 1 Features selected by the solutions of Figure 3. Lookup table with descriptor
acronyms available at http://personal.disco.unimib.it/Vanneschi/bioavailability lookup.txt

Solution Features list (in bold, the ones that appear more than once)

(1) xxx18,x24,xxx30,xxx64,x73,x80,xxx91,x92 ,x100,x132,x134,x135,x156,x171,x180,xxx182,x184,x186,xxx222,x228,xxx230

(2) x2,x6,xxx30,x35,xxx45,x58,xxx91,x110,x116,xxx131,x143,x149,x160,xxx164,xxx182,xxx200,x205,x219,xxx231

(3) xxx5,x12,xxx18,x32,xxx91,x97,xxx106,x124,x125,x142,x151,xxx164,x170,x191,x199,x201,xxx218,xxx222,x224,x225,x227,xxx231

(4) xxx18,x26,xxx28,x38,x41,x50,x52,xxx94,x101,xxx182,x189,x221,xxx230,xxx232

(5) x4,xxx5,x9,xxx17,xxx18,xxx30,xxx37,xxx45,x61,x82,x118,x211,x212,x216,xxx231,x238

(6) xxx3,xxx17,xxx30,xxx37,xxx45,x46,x56,xxx64,x76,xxx94,x121,xxx131,x152,xxx200,xxx231,x239

(7) x1,xxx3,x19,x23,xxx28,x29,xxx37,x42,xxx45,x51,x85,x89,xxx106,x122,x127,x133,x161,x177,x210,xxx218,xxx231,xxx232
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by either of the techniques. There are only two features, x230 and x231 (respectively
N IoAcAt and N IoBaAt, two descriptors related to ionization in water), that stand
out for being selected more often than the remaining 239.

4 Conclusions

We have used the newest state-of-the-art developments of GP for predicting the
human oral bioavailability of medical drugs from a set of molecular descriptors.
We have shown that the latest bloat control method allows the production of
much shorter solutions, and identified some unexpected behaviors loosely related to
overfitting, whose future resolution will allow a further improvement of results.

Acknowledgements. The authors acknowledge project “EnviGP – Improving Genetic Pro-
gramming for the Environment and Other Applications” (PTDC/EIA-CCO/103363/2008)
from Fundação para a Ciência e a Tecnologia, Portugal.
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Pharmacophore-Based Screening as a Clue for 
the Discovery of New P-Glycoprotein Inhibitors 
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Vasconcelos, and Miguel X. Fernandes* 

1 

Abstract. The multidrug resistance (MDR) phenotype exhibited by cancer cells is be-
lieved to be hampering successful chemotherapy treatment in cancer patients. A 
group of ABC drug transporters which particularly include P-glycoprotein (Pgp) con-
tribute to this phenotype. Thus, there is a need to anticipate whether drug candidates 
are possible Pgp substrates or noncompetitive inhibitors. Therefore, a pharmacophore 
model was created based on known Pgp inhibitors and it was used to screen a data-
base of commercial compounds. After the screening, twenty-one candidate  
compounds were selected and their influence in the intracellular accumulation of Pgp 
substrate Rhodamine-123 (Rh123) was investigated by flow cytometry. Eleven com-
pounds were found to significantly increase the accumulation of Rh123, four were 
found to decrease and six showed only a slight effect on the accumulation of Rh123. 
Furthermore, the competitive/non-competitive mechanism for the most promising 
compounds was determined by a luminescence Pgp’s ATPase assay. Based on the cy-
tometry results, a new pharmacophore was created for the Pgp inhibitory activity. The 
overall results provide important clues on how to proceed towards the  
discovery of Pgp inhibitors and which type of molecules merit further analysis.  
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1   Introduction 

Resistance to chemotherapy represents a major obstacle in the treatment of cancer. 
Multidrug resistance (MDR) can be broadly defined as a phenomenon by which 
tumor cells in vivo and cultured cells in vitro show simultaneous resistance to a 
variety of structurally and functionally dissimilar cytotoxic and xenobiotic com-
pounds (Higgins 2007). P-glycoprotein (Pgp), a 170-KDa plasma membrane pro-
tein, represents one of the best characterized barriers to chemotherapeutic treat-
ment in cancer. Pgp actively transports to the extracellular space structurally 
unrelated compounds, conferring the MDR phenotype in cancer. A logical step to 
reverse MDR phenotype is finding molecules that can directly block the activity of 
Pgp (Lehne 2000). However, this is a difficult process since the available Pgp 
structural data has only low-to-medium resolution. Therefore the most suited ap-
proach for designing new compounds is ligand-based design (Pajeva et al. 2004). 

A direct way to analyse Pgp activity is to determine the mean fluorescence in-
tensity of cells jointly exposed to Rhodamine123 (Rh123), a known Pgp substrate, 
and the potential Pgp inhibitor (Goda et al. 2009). The approach is simple and fast, 
though indirect. Nonetheless, compounds that enhance the retention of the probe 
are scored as Pgp ligands, because they interfere with the extrusion of the marker. 
In order to determine how a ligand interacts with Pgp, the measurement of its ef-
fect on the rate of Pgp’s ATP hydrolysis allows to discriminate between noncom-
petitive and competitive inhibitors which are themselves substrates for transport 
(Matsunaga et al. 2006).   

Herein, we investigated the effect of twenty-one compounds in the accumula-
tion of Rh123 in a leukemia cell line overexpressing Pgp, K562Dox, applying a 
pharmacophore model. The Pgp’s ATP hydrolysis assay was used to distinguish 
between noncompetitive and competitive inhibitors (substrates). A 3D-QSAR 
pharmacophore model was also created according to the results obtained in the 
Rh123 accumulation assay. 

2   Methods 

2.1   Pharmacophore Modeling and Virtual Screening of a 
Database of Compounds 

A pharmacophore is the 3D arrangement with the minimal molecular features 
needed for a compound to show biological activity and is given as a set of dis-
tance restraints between features. To create the pharmacophore model we started 
with 26 Pgp known inhibitors from the flavonoid family. The inhibitors structural 
data were uploaded in the PharmaGist webserver (Schneidman-Duhovny et al. 
2008). After getting the pharmacophore from Pharmagist we used it to screen the 
database DrugBank (Wishart et al. 2006). To do so, we first edited the database 
files using small scripts to remove counter-ions, neutralization of partial charges 
and removal of solvent molecules. Additionally, we converted all structures to 3D 
using the program Corina (Molecular Networks GmbH, Erlangen, Germany). Af-
ter preparing the database we run the program VLifeMDS (VLife Ltd., Pune,  
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India) to screen virtually the database using the pharmacophore model generated 
earlier with distance tolerances of 20%. After the screening we discarded the hits 
with a RMSD, to the pharmacophore model, greater than 0,1Å and also discarded 
the hits that did not comply with the Lipinski rules (Lipinski 2000). 

2.2   Flow Cytometry Using Rhodamine 123 

K562 (human chronic myelogenous leukaemia, erythroblastic) and K562Dox (de-
rived from K562, overexpesses Pgp) cell lines (Lima et al. 2007) in exponential 
growth were used in cytometry assays. K562Dox (5 x l06 cells/mL) were incubated 
for 1 h in the presence of 10 or 20µM of the test compounds, and with 1µM 
Rh123. K562Dox and K562 alone as well as K562Dox in the presence of Vera-
pamil, Mibefradil and Quinidine (10 and 20 µM), known Pgp inhibitors, were used 
as controls. After the incubation time, cells were washed twice, ressuspended in 
ice cold PBS and kept at 4ºC in the dark until analysis in the flow cytometer. At 
least 20 000 cells per sample were counted and analyzed by flow cytometry (Epics 
XL-MCL, Coulter), and the amount of fluorescence was plotted as a histogram of 
FL1. Data acquisition was performed using WINMDI (version 2.9) to determine 
median fluorescence intensity values.  

2.3   Determination of ATPase Activity 

The ATPase activity of Pgp was determined using the luminescent ATP detection 
kit (Pgp-Glo Assay Kit, Promega) (Dongping M et al. 2007), using sodium va-
nadate (Na3VO4) and Verapamil as controls. Test compounds at 200µM in buffer 
solution were incubated with 0.5 mg/mL Pgp and 5 mM MgATP at 37°C for 40 
min, and the remaining ATP was detected as a luciferase-generated luminescent 
signal in a luminometer.  

2.4   Pharmacophore Hypothesis 

A 3D-QSAR pharmacophore model was also created using HypoGen module of 
Catalyst program (Accelrys v2.1) (Guner et al. 2004) according to the results ob-
tained in the accumulation of Rh123 assay for 15 Pgp inhibitors. Conformer gen-
eration was carried out with the “Best” algorithm, the feature groups selected were 
hydrogen bond (Hb)-donor and -acceptor, hydrophobic, positive and negative ion-
isable and remaining default parameters. Validation of the pharmacophore, prior 
to the next cycle of experimental determinations, was performed using an enrich-
ment test with 1000 decoy molecules from National Cancer Institute (NCI) with 
similar characteristics (no. atoms, MW, no. Hb-donnor and Hb-acceptors) and 
twelve known Pgp inhibitors. 

3   Results and Discussion 

There were 3 common features present in all 26 inhibitors, 2 aromatic rings and 1 
H-bond acceptor and they can be depicted as shown in Figure 1. After the proce-
dures described to clean the database, we used 4825 structures from DrugBank 
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Fig. 1 Pharmacophore hypothesis used for virtual screening of potential Pgp inhibitors 

 

Fig. 2 Putative pharmacophore for Pgp inhibitors. Green= Hb-acceptor, blue= hydrophobic re-
gion; inter-center distances are represented (top). Pharmacophore and Propafenone (botton). 
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Fig. 3 Enrichment test for pharmacophore model 

which were screened to determine their compliance with the pharmacophore 
model. The hits retrieved follow a normal distribution with R2 = 0,828 and we 
found 167 structures that comply with the pharmacophore model with a RMSD of 
less than 0,1Å. Of these, 20 commercially available molecules were purchased for 
in vitro testing.  

Since K562Dox cell line overexpresses Pgp, differences in the accumulation 
pattern between the several treatments should be related to modulation of this 
pump. According to the cytometry assay we found that Verapamil, Quinidine and 
Mibefradil (known Pgp inhibitors) as well as eleven of the new investigated com-
pounds are increasing the intracellular accumulation of Pgp substrate Rh123. Par-
ticularly, Propafenone, Azelastine, Amoxapine, and Loxapine showed an effect 
similar to that elicited by a known Pgp inhibitor, Quinidine. In contrast, Bleb-
bistatin, Coelenteramide, Indirubin and Leflunomide showed an effect compatible 
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with Pgp activation; only a slight effect in the accumulation rate of Rh123 was ob-
served for the other selected compounds.  

To elucidate which was the mechanism of action of the most promising com-
pounds, their effect on the Pgp ATPase activity was investigated. Results showed 
that Econazole, Amoxapine, Loxapine, Bicalutamide, Zomepirac and Tioconazole 
are noncompetitive inhibitors of Pgp, blocking the ATPase activity. On the other 
hand, Propafenone, Hycanthone, Cyclic Pifithryn-α, Diltiazem, Azelastine and 
Prazosin are like Verapamil, competitive inhibitors of Pgp, stimulating the ATP 
hydrolysis and being themselves transported by the pump. 

Based on the the cytometry assay results, a new refined pharmacophore model 
was constructed (Figure 2). This pharmacophore included two hydrophobic (HA) 
regions and two Hb-acceptor (HBA) features which were intercalated with each 
other. An enrichment test to validate the pharmacophore, prior to validation in the 
next cycle of screening and experimental determinations, is represented in  
Figure 3 and shows enrichment rates of 10-fold over random retrieval of com-
pounds from a pool of unknown molecules. This new pharmacophore retains fea-
tures that explain better the differences between experimental activities. It has one 
more feature than the initial one (Figure 1) but the similarities are clear. These re-
sults will guide the investigation of other molecules, namely new compounds ob-
tained by synthesis, in order to validate the pharmacophore, and the accuracy in 
the prediction of activity. 
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e-BiMotif: Combining Sequence Alignment and
Biclustering to Unravel Structured Motifs

Joana P. Gonçalves and Sara C. Madeira

Abstract. Transcription factors control transcription by binding to specific sites in
the DNA sequences of the target genes, which can be modeled by structured motifs.
In this paper, we propose e-BiMotif, a combination of both sequence alignment
and a biclustering approach relying on efficient string matching techniques based
on suffix trees to unravel all approximately conserved blocks (structured motifs)
while straightforwardly disregarding non-conserved regions in-between. Since the
length of conserved regions is usually easier to estimate than that of non-conserved
regions separating the binding sites, ignoring the width of non-conserved regions is
an advantage of the proposed method over other motif finders.

1 Introduction

Transcription factors (TFs) are key elements of regulatory mechanisms binding to
specific sites in the DNA of protein coding genes to enhance or inhibit their tran-
scription into mRNA. Binding sites are short stretches with 5 to 25 nucleotides long
usually located within non-coding parts of DNA in the so-called promoter regions.
Promoter regions can be modeled as structured motifs, that is, sets of conserved
sequences, or motifs, separated by non-conserved regions of unspecified length. It
is known that genes regulated by common TFs share identical binding sites. In this
context, similar promoter regions can provide important insights into functionally
relatedness of genes and their corresponding regulatory mechanisms. Identifying
structured motifs is a challenging problem. On one hand, we do not know whether a
given set of sequences is regulated by the same TFs or not. On the other hand, prior
information on the composition of the motif is usually unavailable.
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Methods for identifying structured motifs in sequences follow either proba-
bilistic or combinatorial approaches. Most probabilistic strategies rely on iterative
Expectation-Maximization (EM) or Gibbs sampling approaches [1, 8], where con-
vergence is not guaranteed to lead to a global maximum and noisy data is an issue.

Combinatorial methods typically enumerate all possible motifs and search for
their occurrences in the sequences using heuristics to reduce the exponential search
space [2,3,5,6,10]. However, they are not able to discriminate relevant motifs from
potentially numerous random motifs matching the generated models. Furthermore,
they require large number of parameters. This is a major limitation when little is
known about the configuration of the motifs and restricts the motifs to be found.

We present e-BiMotif, a method to identify structured motifs, ignoring the width
of non-conserved regions separating the binding sites. This presents an advantage
over other motif finders, since the length of conserved regions is usually easier to
estimate. Following the approach of Wang et al. [9], e-BiMotif combines sequence
alignment, to reveal conserved regions within sequences, with biclustering to further
group sequences with similar motif structures.

This paper is outlined as follows. Section 2 describes alternative methods for
structured motif identification. Section 3 presents our approach. Finally, Section 4
outlines conclusions and future work.

2 Related Work

SMILE [5] relies on a traversal with backtracking of a generalized suffix tree to
spell all occurrences of simple motifs for a structured motif with gaps. The search
for each motif is guided by a virtual lexicographic trie containing all possible motifs
in a range of lengths. Its time complexity is exponential in the number of gaps [2].

Co-Bind [8] models structures of two motifs using Position Weight Matrices
(PWMs) and finds PWMs maximizing the joint likelihood of pairwise occurrences.
Since a limited number of Gibbs Sampling steps is performed to select motifs, many
patterns are disregarded. Convergence to an optimal PWM is also not guaranteed.

MITRA-dyad [3] reduces the problem of searching for pairs of motifs to the one
of finding a simple motif. It combines SMILE’s tree-like structure and search, and
the Winnower’s graph construction for pruning the search space. MITRA relies on a
mismatch tree. Although it will typically examine a smaller search space, analyzing
a graph per node increases traversal time. RISO [2] is also based on SMILE and
introduces box-links to store the information needed to jump from each motif to an-
other and skip the corresponding nodes in the tree. A factor tree is used. Combined,
these enhancements produce a significant reduction in both time and space.

ExMotif [10] extracts all frequent occurrences of a structured motif model with
a given quorum. Sequences are represented by sorted lists of symbol occurrence
positions. The positional join operation efficiently builds a list of occurrences when
concatenating two sequences. Occurrences of simple/structured motifs are obtained
by positional joins on the list of symbols/list of occurrences of simple motifs.
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MUSA [6] generates all motif models of a given length. A matrix of co-
occurrences is then constructed to depict the ε tolerant score of the most common
configuration in the sequences. Biclustering is then applied to group models and
identify structured motifs. Identification of all interesting correlations is not guaran-
teed but weak motifs, only revealed by exhaustive enumeration, can be found.

3 Methods

e-BiMotif is based on BlockMSA [9], an algorithm combining global sequence
alignment and biclustering to produce local multiple sequence alignment (MSA).
Note that, although local MSA and structured motif finding are two different
problems, both aim at identifying locally conserved regions in sequences.

Given the definitions below, the problem of identifying structured motifs
translates into that of finding optimal ordered sets of non-overlapping blocks
composed of fragments occurring approximately in subsets of sequences. e-
BiMotif addresses this problem in two steps: (Step 1) Identify candidate blocks
(local conserved regions within subsets of sequences), performed as in [9];
(Step 2) Group subsets of sequences exhibiting a similar structure of candidate
blocks and report the corresponding structured motifs, using e-BiMotif biclustering.

[Fragment]. For any sequence Sk (with |Sk| symbols), Sk[i.. j] (1≤ i < j≤ |Sk|) is a fragment,
i.e., a contiguous subsequence, of sequence Sk starting at position i and ending at position j.

[k-block]. A k-block b = { f1, f2, ..., fk} is an ungapped alignment region conserved in a set
of sequences S with k sequences with k equal length fragments, one from each k sequence in
S.

[Block similarity score]. Given a k-block b, its similarity score is the sum of scores of all
the

(k
2

)
pairwise combinations of fragments fi, f j (1 ≤ i < j ≤ k) from b: Scoreblock(b) =

∑1≤i< j≤k Score( fi, f j), where Score( fi, f j) is the score between fi and f j.

[Chain]. A set of k-blocks on a set of k sequences, B = {b1,b2, ...bn}, where each bi (1≤ i≤
n) is a k-block, is called a chain if, for all pairwise combinations of blocks, (bi,b j) (1 ≤ i <
j ≤ n), bi and b j are non-overlapping blocks.

[Chain similarity score]. The similarity score of a chain of k-blocks, C =
{b1,b2, ...,bn}, where each bi (1 ≤ i ≤ n) is a k-block, is defined as the sum of
the scores of all its k-blocks minus the gap penalties between them: Scorechain(C) =[
∑1≤i<n Scoreblock(bi)−Gap(bi,bi+1)

]
+Scoreblock(bn)

[Structured motif]. Given a set of chains on a given set of k sequences,
Chains = {C1,C2, ...,Cn}, where each Ci (1 ≤ i ≤ n) is a chain, a structured motif is
the chain Ci with the highest score.
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3.1 Finding and Reporting Structured Motifs Using e-BiMotif

e-BiMotif differs from BlockMSA [9] in the biclustering step. The differences lie in
two key steps explained in the subsections below: (i) mapping of the candidate block
identification results to the biclustering formulation and (ii) biclustering method.

BlockMSA defines a binary matrix, where rows and columns represent candidate
blocks and sequences, respectively (Fig. 1). Each element is either 1 or 0 depending
on whether the block is in the sequence or not. BiMax [7] is then applied to the
matrix. It uses a divide-and-conquer approach to extract biclusters composed of 1s
not entirely contained in any other bicluster (inclusion-maximal biclusters).

Fig. 1 shows an example of MSA mapping to biclustering (left), the biclustering
matrix obtained after applying BiMax (top right), the corresponding mapping from
biclustering results back to MSA adapted from BlockMSA [9] (bottom-right). Note
that in this example, BlockMSA would miss Block3 in bicluster V and sequence S7
in bicluster U. The original biclusters V and U could only be eventually recovered
in the block assembly and post-processing step as explained below.
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S5
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S7

Block1

Block1

Block1

Block1

Block2

Block2

Block2

Block3

Block3

Block3

Block3

Block3
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Block5

Block5

Block5

Block4

Block4

Block4

Block1

S1 S2 S3 S4 S5 S6 S7
Block1 1 1 0 1 0 1 1
Block2 0 0 1 0 1 0 0
Block3 1 1 0 1 1 0 0
Block4 0 0 1 0 1 0 1
Block5 1 1 0 1 0 1 0
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Block1

Block1

Block1
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Block4

Block4
S5

Block2 Block4

S1 S2 S4 S6 S3 S5 S7
Block1 1 1 1 1 0 0 1
Block3 1 1 1 0 0 1 0
Block5 1 1 1 1 0 0 0
Block2 0 0 0 0 1 1 0
Block4 0 0 0 0 1 1 1

BV

BU

SV SU

Bicluster V

Bicluster U

Fig. 1 Adapted figures from BlockMSA [9]. The original example was changed to present a
case where the biclusters are not perfect (only composed of 1s) in order to show the advan-
tages of e-BiMotif approach where errors (insertion, deletion, substitution) are considered in
the biclustering method. The changes are highlighted: Block3 was inserted in S5 and deleted
from S6; Block2 was replaced by Block1 in S7. These resulted in the substitutions 0 ↔ 1
highlighted in both matrices

3.1.1 Mapping Candidate Blocks to the Biclustering Formulation

We use the following MSA to biclustering mapping: each sequence is rewritten as
the ordered set of the candidate blocks it contains, disregarding the non-conserved
regions in-between. In this case, the alphabet of the new sequences holds the
identifiers of all candidate blocks unraveled in the previous step (see Fig. 2).
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U

V

S1 1 3 5
S2 1 3 5
S3 2 4
S4 1 3 5   
S5 2 4
S6 1 3 5
S7 2 4

M

$5

S1 1 3 5
S2 1 3 5
S4 1 3 5
S6 1 3 5
S3 2 4   
S5 2 4
S7 2 4

U

V

S1 1 3 5
S2 1 3 5
S3 2 4
S4 1 3 5   
S5 2 3 4
S6 1 5
S7 1 4

M

S1 1 3 5
S2 1 3 5
S4 1 3 5
S6 1 5
S3 2 4  
S5 2 3 4
S7 1 4

Fig. 2 Mapping for: the original example in BlockMSA [9] (top), and the adapted example in
Fig. 1 (bottom). Also presented are the biclusters U and V in the generalized suffix tree used
by e-BiMotif biclustering (details below). Nodes in light and dark grey identify the motifs

The problem of searching for structured motifs then translates into finding se-
quences with approximate candidate block structures, that is, identifying e-motifs
and its biclusters (see definitions below) in the rewritten sequences. This formula-
tion differs from the one in BlockMSA in three major points: (i) the non-conserved
regions are disregarded; (ii) the order of blocks now plays an important role; (iii)
we introduce an error threshold on the block structure. Essentially, we take advan-
tage of block ordering granted by sequence alignment to restrict the problem to
the one of finding contiguous subsequences with a maximum number of errors: e-
motifs. Moreover, features (i) and (iii) allow us to eliminate the block assembly
and post-processing step, used by BlockMSA to recover weakly conserved regions
and merge blocks if they are within a relatively short distance. First, the inclusion
of errors (i) enables to identify e-motif biclusters containing approximately con-
served regions. Second, by disregarding non-conserved regions (iii) we guarantee
that blocks can be included in the same e-motif bicluster regardless of the distance
in-between.

[e-motif]. An e-motif is a sequence m of length |m| occurring exactly or within an e-
neighborhood in a set of sequences S at potentially different starting positions.

[e-neighborhood]. The e-neighborhood of a sequence Sk of length |Sk|, N(e,Sk), is
defined as the set of sequences S, such that: for each sequence Si (1 ≤ i ≤ |S|) in S,
Hamming(Sk,Si) ≤ e, where e is an integer such that e ≥ 0. This means we need at most e
operations (substitution, insertion, deletion) to obtain Si from Sk and vice-versa.
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3.1.2 Biclustering Method

e-BiMotif biclustering is based on e-CCC-Biclustering [4]. The major differences
lie in: (i) the use of sequences of variable lengths, opposed to a matrix-like struc-
ture; (ii) the elimination of a matrix transformation, which was used to restrict the
occurrences of a model to the same positions in the sequences.

e-BiMotif biclustering identifies and reports all maximal e-motif biclusters in a
set of N sequences (see definitions below). In order to be valid, a given e-motif
model m of length |m| must occur exactly or approximately (any word in its e-
neighborhood, N(e,m)) in at least q distinct sequences, where 2≤ q≤N. Formally:
given a set of N sequences Si (2 ≤ N) and two integers e ≥ 0 and 2 ≤ q ≤ N,
where e is the maximum number of errors allowed per e-motif occurrence and q
the required quorum, e-BiMotif biclustering find all e-motif models m appearing
in at least q distinct sequences of Si. Biclusters U and V in the original (top) and
adapted (bottom) examples in Fig. 2 are 0-motif biclusters and 1-motif biclusters,
respectively.

[e-motif bicluster]. An e-motif bicluster is an e-motif m, a subset of sequences s =
{s1,s2, ...,sk} from a set S (|s| ≤ |S|) and a set of initial and final positions p =
{(i1, f1),(i2, f2), ...,(ik, fk)}, such that each pair of initial and final positions, (ix, fx) (1 ≤
x≤ k), identifies an exact or approximate (in the e-neighborhood) occurrence of e-motif m in
sequence sx.

[Sequence-maximal e-motif bicluster]. An e-motif bicluster is sequence-maximal if it can-
not be added more sequences while maintaining the property referred in the definition of an
e-motif.

[Left/Right-maximal e-motif bicluster]. An e-motif bicluster is left/right-maximal if its e-
motif cannot be extended by adding a symbol to its beginning/end without losing sequences.

[Maximal e-motif bicluster]. An e-motif bicluster is maximal if it is sequence-left-right-
maximal.

e-BiMotif biclustering starts by building a generalized suffix tree T for the set of
sequences Si. After further preprocessing, T is used to spell all valid e-motif mod-
els verifying two properties: (i) All prefixes of a valid model are also valid models;
(ii) When e = 0, spelling a model leads to one node v in T such that L(v) ≥ q.
When e > 0, spelling a model leads to nodes v1, ...,vk in T for which ∑k

j=1 L(v)≥ q.
Since occurrences of a valid model are nodes in T , they are called node-occurrences.
e-BiMotif identifies valid models by extending them in T and reporting their corre-
sponding node-occurrences. Our definition of node-occurrence is an adaptation of
the one used in e-CCC-Biclustering [4] to allow insertion and deletion errors:

[Node-occurrence]. A node-occurrence of a model m is a triple (v,verr , p), where v is a node
in T , verr is the number of operations needed to transform m into the string-label of v and
p ≥ 0 is a position in T such that: (i) If p = 0 we are at node v; (ii) If p > 0 we are in
E(v), the edge from f atherv to v, in a point p between two symbols in label(E(v)) such that
1≤ p≤ |label(E(v))|.
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e-BiMotif biclustering relies on three Lemmas supporting valid extensions of a
model m to a new model m′ by concatenating model m with a symbol α (α ∈ Σ):

Lemma 1. (v,verr ,0) is a node-occurrence of model m′ = mα , if and only if:
(i) (v,verr−1,0) is a node-occurrence of m (Deletion).
(ii) ( f atherv,verr,0) is a node-occurrence of m and label(E(v)) = α or ( f atherv,verr,
|label(E(v))|−1) is a node-occurrence of m and label(E(v))[|label(E(v))|]) = α (Match).
(iii) ( f atherv,verr− 1,0) is a node-occurrence of m and label(E(v)) = β �= α or (v,verr −
1, |label(E(v))| − 1) is a node-occurrence of m and label(E(v))[|label(E(v))|]) = β �= α
(Substitution).
(iv) ( f atherv,verr − 1,0) is a node-occurrence of m and |label(E(v))| = 1 or (v,verr −
1, |label(E(v))|−1) is a node-occurrence of m and |label(E(v))|> 1 (Insertion).

Lemma 2. (v,verr ,1) is a node-occurrence of a model m′ = mα , if and only if:
(i) (v,verr−1,1) is a node-occurrence of m (Deletion).
(ii) ( f atherv,verr,0) is a node-occurrence of m and label(E(v))[1] = α (Match).
(iii) ( f atherv,verr−1,0) is a node-occurrence of m and label(E(v))[1] = β �= α (Substitu-
tion).
(iv) ( f atherv,verr−1,0) is a node-occurrence of m and |label(E(v))|> 1 (Insertion).

Lemma 3. (v,verr , p), where 2 ≤ p < |label(E(v))|, is a node-occurrence of a model m′ =
mα , if and only if:
(i) (v,verr−1, p) is a node-occurrence of m (Deletion).
(ii) (v,verr , p−1) is a node-occurrence of m and label(E(v))[p] = α (Match).
(iii) (v,verr−1, p−1) is a node-occurrence of m and label(E(v))[p] = β �= α (Substitution).
(iv) (v,verr−1, p−1) is a node-occurrence of m (Insertion).

Algorithm 1. e-BiMotif biclustering
Input : {S1, ...,SN}, T , Σ , e, qs, qm

Output: Maximal e-motif biclusters.
modelsOcc←{}1

computeRightMaximalBiclusters(Σ , e, qs, qm, {S1, ...,SN}, modelsOcc)2

deleteNonLeftMaximalBiclusters(modelsOcc)3

if e > 0 then4

deleteRepeatedBiclusters(modelsOcc)5

reportMaximalBiclusters(modelsOcc)6

e-BiMotif biclustering identifies and reports all maximal e-motif biclusters
with at least qs sequences and e-motif length of at least qm in three steps: (i) Com-
pute all models corresponding to sequence-right-maximal e-motif biclusters us-
ing Proc. computeRightMaximalBiclusters [4] and an adaptation of Proc.
spellModels in [4]; (ii) Delete models identifying non left-maximal e-motif bi-
clusters (Proc. deleteNonLeftMaximalBiclusters [4]); (iii) Delete mod-
els representing same e-motif biclusters (Proc. deleteRepeatedBiclusters
[4]). Proc. spellModels traverses the tree to spell valid models and their node-
occurrences (see pseudocode below). Proc. extendModelFromNode and Proc.
extendModelFromBranch (Appendix A) perform extension of valid models.
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Procedure spellModels
Input: Σ , e, qs, qm, modelsOcc, Tright , m, lengthm, Occm, Extm, f atherm,

numberO f SeqOcc f atherm

1 keepModel(qs, qm, modelsOcc, Tright , m, lengthm, Occm, f atherm, numberO f SeqOcc f atherm )
if lengthm < maximumModelLength then

2 foreach symbol α in Extm do
3 maxSeq ← 0
4 minSeq ← ∞
5 if α is not a string terminator then
6 Colorsmα ←{}
7 if e > 0 then
8 for i from 1 to N do
9 Colorsmα [i]← 0

10 Extmα ←{}
11 Occmα ←{}
12 foreach node-occ (v,verr, p) in Occm do
13 removeNodeOccurrence((v,verr, p), Occm)
14 if p = 0 then
15 extendModelFromNode(Tright , (v,verr, p), α , Occm, Occmα ,

Colorsmα , Extmα , maxSeq, minSeq, 0)
16 else
17 extendModelFromBranch(Tright , (v,verr, p), α , Occm, Occmα ,

Colorsmα , Extmα , maxSeq, minSeq, 0)
18 if modelHasQuorum(maxSeq, minSeq, Colorsmα , qs) then
19 spellModels(Σ , e, qs, qm, modelsOcc, Tright , mα , lengthm +1, Occmα ,

Extmα , m, numberO f SeqOccm)

3.2 Complexity Analysis of e-BiMotif

Step 1 (candidate block identification) takes O(N2a2) + O(N f a) time, where
N is the number of sequences, f is the number of seed fragments and
a is the average sequence length in an unaligned region [9]. In Step
2 (biclustering), Proc. computeRightMaximalBiclusters is O(NLBe),
Proc. deleteNonLeft MaximalBiclusters is O(lLBe), and Proc.
deleteRepeatedBiclusters and Proc. report MaximalBiclusters
are O(NLBe), where L is the sum of the lengths of the sequences, l is the length
of the longest sequence, B is the size of the alphabet corresponding to the number
of candidate blocks, and e is the maximum number of errors. Thus, Step 2 takes
O(NLBe) when N > l and O(lLBe) otherwise.

4 Conclusions and Future Work

We propose e-BiMotif to identify structured motifs in multiple sequences. This bi-
clustering approach to motif finding efficiently unravels all approximately conserved
blocks while straightforwardly disregarding non-conserved regions in-between.

Currently, e-BiMotif uses a candidate block identification step outlined in [9].
However, it remains unclear if global alignment is the best strategy to success-
fully identify locally conserved regions. In fact, this is the main motivation for the
existence of local alignment methods. Moreover, the greedy clustering approach
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used for candidate block construction does not lead to an optimal solution. In this
context, and since each e-motif actually represents a locally conserved region span-
ning a subset of sequences (an e-motif is a candidate block), it would be worth to
replace sequence alignment by an e-BiMotif strategy using the original sequences.

The time complexity of e-BiMotif biclustering is O(NLo) and O(4eNLo) to iden-
tify candidate blocks with perfectly and approximately conserved regions, respec-
tively, outperforming [9] (N being the number of sequences, Lo the sum of lengths of
the original sequences and e the number of errors). Moreover, e-BiMotif bicluster-
ing guarantees all locally conserved regions are found, while the combined approach
of pairwise alignment and greedy clustering does not; there is no restrictions on the
width of conserved regions, a major advantage when prior knowledge is not avail-
able; and the length of each conserved region is maximized, avoiding the generation
of an excessive and unnecessary number of overlapping candidate blocks.

BiMax biclustering used in BlockMSA [9] takes O(BNmin(B,N)β ) to identify
perfect biclusters, where B is the number of candidate blocks and β is the number of
biclusters. e-BiMotif biclustering is O(max{NLrBe, lrLrBe}), where Lr is the total
length of the rewritten sequences and lr the length of the longest rewritten sequence.
The biclustering approach in [9] is not able to consider errors or gaps between
blocks, thus requiring an additional greedy block assembly and post-processing step.
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A. e-BiMotif: Algorithmic Details

Procedure extendModelFromNode
Input: Tright , (v,verr, p), α , Occm, Occmα , Colorsmα , Extmα , maxSeq, minSeq, level

1 if level = 0 then
2 if verr < e then
3 extendModel(Tright , α , Occm, Occmα , (v,verr +1, p), Colorsmα , Extmα , maxSeq,

minSeq, level, false)
4 if v is an internal node then
5 foreach child son of node v do
6 if label(E(son))[1] is not a string terminator then
7 if |label(E(son))|> 1 then
8 pson ← 1
9 else

10 pson ← 0
11 tryExtension(Tright , (v,verr, p), son, pson, β , α , Occm, Occmα , Colorsmα , Extmα ,

maxSeq, minSeq, level)

Procedure extendModelFromBranch
Input: Tright , (v,verr, p), α , Occm, Occmα , Colorsmα , Extmα , maxSeq, minSeq, level

1 if level = 0 then
2 if verr < e then
3 extendModel(Tright , α , Occm, Occmα , (v,verr +1, p), Colorsmα , Extmα , maxSeq,

minSeq, level, false)
4 if label(E(v))[p+1] is not a string terminator then
5 if |label(E(v))|> p then
6 pnew = p+1
7 else
8 pnew = 0
9 tryExtension(Tright , (v,verr, p), son, pson, β , α , Occm, Occmα , Colorsmα , Extmα ,

maxSeq, minSeq, level)

Procedure findMinimumError
Input: matchError, substitutionError, insertionError, deletionError, β , α

1 minErr ← insertionError
2 minErr ← min(minErr,deletionError)
3 if β = α then
4 minErr ← min(minErr,matchError)
5 else
6 minErr ← min(minErr,substitutionError)
7 return minErr
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Procedure tryExtension
Input: Tright , (v,verr, p), son, pson, β , α , Occm, Occmα , Colorsmα , Extmα , maxSeq, minSeq,

level
1 if Occm is not empty then
2 (x,xerr, px)← getNextNodeOccurrence(Occm)
3 if x = son and px = pson then
4 removeNodeOccurrence((x,xerr, px), Occm)
5 sonerr ← findMinimumError(verr , verr +1, verr +1, xerr +1, β , α)
6 if sonerr ≤ e then
7 extendModel(Tright , α , Occm, Occmα , (son,sonerr, pson), Colorsmα , Extmα ,

maxSeq, minSeq, level, true)
8 else
9 removeChildrenNodeOccs(Occm, son, pson)

10 return
11 sonerr ← findMinimumError(verr , verr +1, verr +1, β , α)
12 extendModel(Tright , α , Occm, Occmα , (son,sonerr, pson), Colorsmα , Extmα , maxSeq, minSeq,

level, false)

Procedure extendModel
Input: Tright , α , Occm, Occmα , Colorsmα , (n,nerr, p), Extmα , maxSeq, minSeq, level

doRecursion
1 addNodeOccurrence((n,nerr, p), Colorsmα )
2 updateMaxSeqMinSeq(maxSeq, minSeq, n)
3 if e > 0 then
4 updateColors(Colorsmα , n)
5 if nerr = e then
6 if p > 0 then
7 if label(E(n))[p+1] is not a string terminator then
8 addSymbol(label(E(n))[p+1], Extmα )
9 if doRecursion = true then

10 extendModelFromBranch(Tright , (n,nerr, p), α , Occm, Occmα , Colorsmα ,
Extmα , maxSeq, minSeq, level +1)

11 else
12 if n is an internal node then
13 foreach child son of node n do
14 if label(E(n))[1] is not a string terminator then
15 addSymbol(label(E(n))[1], Extmα )
16 if doRecursion = true then
17 extendModelFromNode(Tright , (n,nerr, p), α , Occm, Occmα , Colorsmα , Extmα ,

maxSeq, minSeq, level +1)
18 else
19 addAllSymbols(Σ , Extmα )
20 if doRecursion = true then
21 if p > 0 then
22 extendModelFromBranch(Tright , (n,nerr, p), α , Occm, Occmα , Colorsmα ,

Extmα , maxSeq, minSeq, level +1)
23 else
24 extendModelFromNode(Tright , (n,nerr, p), α , Occm, Occmα , Colorsmα , Extmα ,

maxSeq, minSeq, level +1)
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Applying a Metabolic Footprinting Approach to 
Characterize the Impact of the Recombinant 
Protein Production in Escherichia coli  

Sónia Carneiro*, Silas G. Villas-Bôas, Isabel Rocha, and Eugénio C. Ferreira 

Abstract. In this study metabolic footprinting was applied to evaluate the metabolic 
consequences of protein overproduction at slow growth conditions (μ = 0.1 h-1). The 
extracellular metabolites detected by gas chromatography-mass spectrometry char-
acterized the metabolic footprints before and after the induction of the recombinant 
protein production (i.e. pre- and post-induction phases). Metabolic footprinting en-
abled the discrimination between the two growth phases and exposed significant al-
terations in the extracellular milieu during the recombinant process.  

1   Introduction 

Escherichia coli has been exploited for the production of a variety of products, es-
pecially recombinant proteins with pharmaceutical applications. Vast efforts have 
been made to improve the productivity of such bioprocesses, like the optimization 
of operational conditions, medium composition and the implementation of moni-
toring and control strategies [11,12,21]. However, the overproduction of these re-
combinant products often causes cellular stress events that result in slow growth 
and eventually cessation of growth [2,3,8,18]. The rapid exhaustion of essential 
metabolic precursors and cellular energy due to the expression of recombinant 
proteins may result in the imbalance of the metabolic load in the host cell, also 
called metabolic burden [9]. It is believed that the withdrawal of the intermediates 
that serve as biochemical precursors explains the decreasing tricarboxylic acid 
(TCA) cycle activity and consequent acetate production that has been reported in 
many works [1,5-7,10,22,23,25].  

In recent years, various high-throughput experimental techniques have been 
used to understand the physiological behavior of cells during the operation of 
these bioprocesses and to develop strategies to overcome some of these limita-
tions, like the design of improved strains that maximize the yield or productivity 
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of recombinant proteins [4,14]. Transcriptome and proteome analyses have been 
widely used to investigate the stress response mechanisms associated with over-
production of recombinant proteins in E. coli, but so far metabolomic approaches 
were scarcely exploited in the characterization of recombinant cultures. Metabolic 
footprinting, i.e. the analysis of the entire set of metabolites released from cells 
into the extracellular medium, can be an effective method to characterize the 
metabolic state of cells at diverse environmental conditions. The secretion of me-
tabolites during the production of recombinant proteins may reflect the adjustment 
of the intracellular metabolism in response to the imposed metabolic demands 
[13], since the intracellular accumulation of certain metabolites due to metabolic 
imbalances will most probably result in their excretion. Therefore, metabolic foot-
printing can represent an invaluable tool to generate key information that, together 
with other experimental data, will help in the optimization of recombinant  
cultures. 

In this study, we investigated the usefulness of metabolic footprinting to assess 
the impact of the induction of recombinant protein production in E. coli cells. To 
avoid overlapping cellular responses that could be triggered, for example by meta-
bolic overflow, cellular growth was maintained at low rates through the control of 
the glucose feeding profile.  

2   Material and Methods 

2.1   Growth Conditions 

The E. coli strain W3110 (F-, LAM-, IN[rrnD-rrnE]1, rph-1) was transformed 
with the cloned pTRC-HisA-AcGFP1 plasmid encoding the production of the re-
combinant AcGFP1 protein. The gfp gene was amplified from the pAcGFP1 
plasmid (from Clontech) that encodes for the green fluorescent protein AcGFP1, a 
derivative of AcGFP from Aequorea coerulescens.  

Cells were first grown in a shake flask pre-culture using minimal medium con-
sisting of 5 g·kg-1 of glucose, 6 g·kg-1 of Na2HPO4, 3 g·kg-1 of KH2PO4, 0.5 g·kg-1 
of NaCl, 1 g·kg-1 of NH4Cl, 0.015 g·kg-1 of CaCl2, 0.12 g·kg-1 of MgSO4.7H2O, 
0.34 g·kg-1 of thiamine, 2 mL·kg-1 of trace-element solution (described elsewhere 
[16], 2 mL·kg-1 of vitamins solution (described elsewhere [16]), 20 mg·kg-1of L-
isoleucine and 100 mg·kg-1 of ampicillin. For fed-batch cultures, cells were there-
after transferred to a fermenter with the same minimal medium, except glucose. 
The feeding medium consisted of 50 g·kg-1 of glucose, 10 g·kg-1 of NH4Cl, 4 g·kg-

1 of MgSO4.7H2O, 20 mg·kg-1of L-isoleucine and 100 mg·kg-1 of ampicillin.  
Fed-batch fermentation was conducted in a 5L fermenter (Biostat MD) with a 

working volume of 2 L at 37ºC, pH 7 and dissolved oxygen (DO) above 30%. The 
induction of AcGFP1 protein production was performed with 1.5 mM IPTG (iso-
propyl β-D-thiogalactoside) when the culture reached an optical density 
(OD600nm) of 2.3. Fermentation conditions were monitored and controlled via a 
computer supervisory system. A closed-loop feeding control algorithm was em-
ployed to maintain the growth rate (µ) constant in the fed-batch culture [17]. The  
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algorithm is based on a Monod kinetic model using glucose as the only growth-
limiting substrate and can be represented by the following equation: 
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To maintain the specific growth rate (µ) at 0.1h-1, the feeding profile was com-
puted based on the growth yield in glucose (YX/S) that was set to 0.35 and the con-
centration of glucose in the feed (Sf), kept at 50 g·kg-1. The culture medium weight 
(WR) was measured online, while the biomass concentration (X) was estimated 
based on the initial concentration.  

2.2   Analytical Methods 

Samples were taken from the fermenter approximately every 30 minutes for the 
determination of OD600nm, AcGFP1 fluorescence, glucose and acetate concentra-
tions and the GC-MS analysis of extracellular amino and nonamino organic acids. 
In order to determine the cell dry weight, 10 mL of broth were centrifuged at 
10000 g for 20 min at 4ºC, washed twice with deionized water and dried at 105 °C 
to constant weight. The production of AcGFP1 was determined by fluorescence 
measurements at a Jasco FP-6200 spectrofluorometer with excitation and emission 
wavelengths of 475 and 505 nm, respectively, a bandwidth of 10 nm and a high 
sensitivity response in 0.1 seconds. His-Tag purification of the AcGFP1 was per-
formed with HiTrap columns (GE Healthcare Bio-Sciences AB) and the concen-
tration was determined by the Bradford method using BSA as standard. The meta-
bolic footprints were analyzed by GC-MS. After the lyophilization of 1 mL of 
each sample in triplicates, chemical derivatization was performed using the methyl 
chloroformate (MCF) method described elsewhere [26]. Samples were thereafter 
analyzed with a GC-MS system – a GC7890 coupled to an MSD5975 - (Agilent 
Technologies) equipped with a ZB-1701 GC capillary column, 30 m x 250 mm id 
x 0.15 mm (film thickness) with 5 m guard column (from Phenomenex), at a con-
stant flow rate of 1.0 mL/min of helium. Samples (1 µL) were injected onto the 
column under pulsed splitless mode (1.8 bars until 1 min, 20 mL/min split flow af-
ter 1.01 min) and the detector was set with a scan interval of 1.47 seconds and m/z 
range of 38-650. 

2.3   Data Processing and Statistical Analysis 

The mass fragmentation spectrum was analyzed with the Automated Mass Spec-
tral Deconvolution and Identification System (AMDIS) [24] to identify the me-
tabolites matching the analytical chemical standards. The peak intensity values of 
the identified metabolites in the spectrum were normalized by the peak intensity of 
the internal standard (D-4-alanine) and the corresponding biomass concentration 
of the sample. Further data processing and statistical analysis were performed with  
 



196 S. Carneiro et al.
 

MultiExperiment Viewer (MeV) v4.5 [20]. The normalized peak intensity values 
were log2 transformed and further computed using K-means clustering (KMC), hi-
erarchical clustering (HCL), and principal component analysis (PCA). K-means 
method was used to group the metabolic profiles into k clusters, while hierarchical 
clustering distributed samples and metabolites into branched groups represented 
by a two dimensional tree. Euclidean distance metrics were used in both clustering 
methods. PCA was further used to visualize whether the samples could be differ-
entiated based on their metabolic profiles. 

3   Results 

In this study the impact of the production of recombinant proteins in the E. coli 
metabolism was investigated. The resulting growth pattern (Figure 1) shows  
that the biomass formation was affected by the AcGFP1 production, since before 
the IPTG-induction the experimental growth rate (0.16 h-1) was higher than  
the growth rate imposed by the feeding profile. In turn, after IPTG induction the 
estimated biomass concentration was closer to the experimentally determined,  
corresponding to a growth rate of approximately 0.09 h-1. This suggests that the 
biomass yields from glucose (YX/S) in the two growth phases were considerably 
different. In the first phase (pre-induction) glucose entering the cell was used for 
growth and maintenance, while in the second phase (post-induction) glucose was 
also allocated to AcGFP1 formation.  

 

 

Fig. 1 Growth profile of the recombinant E. coli during the controlled fed-batch fermenta-
tion. a) The biomass formation and the AcGFP1 production were monitored in the pre- and 
post-induction phases. The dashed arrow indicates IPTG addition to the culture and the 
other arrows point to the samples analyzed in the GC-MS. Samples were identified by the 
letters A and B, corresponding to the pre- and post induction phases, respectively. b) The 
feeding profile generated by the model was periodically updated for the estimated biomass 
concentration 
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Fig. 2 Analysis of the metabolic footprints. a) Hierarchical clustering (HCL) defined clus-
ters in the sample and metabolite dimensions. b) Principal component analysis (PCA) 
grouped samples from the pre-indution phase (group A) isolated from samples taken after 
IPTG-induction (group B). c) K-Means Clustering (KMC) gives the resulting clusters based 
on the KMC input parameters (50 interactions upper limit). Metabolite abbreviations: cbm - 
carbamic acid; 2paac - 2-phenylaminoacetic acid; ocdca – stearic acid; fum – fumaric acid; 
bnz – benzoic acid; succ – succinic acid; acon-C – cis-aconitic acid; mlt – malonic acid; 
glu-L – L-glutamic acid; asp-L – L-aspartic acid; 4hbz - hydroxybenzoic acid; itcon – ita-
conic acid 

Since the experiments were performed at slow growth, no acetate was accumu-
lated. However, unexpected metabolites were detected in the extracellular medium 
during the fed-batch experiment. According to the GC-MS results, important dif-
ferences were identified in the metabolic footprints in both growth phases: pre-
induction (phase A) and post-induction (phase B).  

Results from HCL and PCA analyses (Figure 2a and 2b) show that samples 
taken during phases A and B presented distinct metabolic footprints. Although 
HCL shows that samples B5 cluster in a small sub-branch, it is clear that the me-
tabolic footprints sampled before IPTG-induction (phase A) are distinct from 
those sampled after IPTG-induction (phase B). This was also confirmed by the 
PCA graph that assigned samples into two major groups corresponding to the 
growth phases. Further examination of the clusters generated by the K-means me-
thod (Fig. 2c) reveals that some metabolites presented similar profiles along the 
fermentation process. For example, cluster 2 was characterized by the extracellular 
accumulation of cis-aconitic acid (acon-C) and malonic acid (mlt) immediately af-
ter the IPTG induction, while metabolites within cluster 1 were secreted approxi-
mately two hours later, when the AcGFP1 production was most evident. Carbamic 
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acid (cbm), involved in the production of a source of nitrogen for E. coli growth, 
was the only metabolite that did not cluster with any other metabolite.  

4   Discussion and Conclusions 

Both PCA and HCL analyses indicate that the recombinant protein production in 
E. coli has a high impact in the cellular metabolism. Several metabolites were se-
creted into the medium after IPTG induction, in particular metabolites that were 
collected within clusters 1 and 2. For the other metabolites, it is not possible to 
discern if their profiles were influenced by the production of recombinant protein 
or by the changing fed-batch conditions (biomass concentration increases during 
the experiment). However, metabolites collected in clusters 1 and 2 are more like-
ly to be modulated by the recombinant process since the accumulation of these 
metabolites was only observed in phase B. 

The accumulation of cis-aconitic acid, that participates in the TCA cycle and 
two other amino acids, which precursors are TCA intermediates, such as the L-
glutamic and L-aspartic acids that are synthesized via the enzymatic conversion of 
the α-ketoglutaric and oxaloacetic acids, respectively, suggest that this pathway is 
notably affected by the production of the recombinant protein. As reported 
[15,19], the metabolic effects imposed by the plasmid maintenance and formation 
of the recombinant product were found to be associated with the metabolic burden 
caused by the withdrawal of some metabolic intermediates that serve as biochemi-
cal precursors. As a consequence, the activity of many biochemical pathways is 
affected and it is frequently observed a decrease in the TCA cycle activity and the 
production of by-products that, at high concentrations, might be toxic to the cells. 
Therefore, by unbalancing the activity of certain reactions, it is expected that some 
metabolites are accumulated and subsequently secreted into the extracellular me-
dium. This supports the idea that the metabolic adjustments required to compen-
sate the additional production of a recombinant product are not as efficient as de-
sired from a bioprocess optimization perspective. 

Although the metabolic footprint measurements are not entirely informative, 
since they do not provide a comprehensive analysis of the intracellular metabolic 
changes, they can be used as variables in a multivariate statistical process control, 
like dynamic principal component analysis, for the on-line bioprocess monitoring. 
Ultimately, this information can help to characterize the physiological state and 
culturing performance during recombinant processes. From an engineering point 
of view, it is crucial to operate these processes in order to achieve consistent and 
reproducible qualities by developing modeling strategies using real-time observa-
tion of process variables, and furthermore to detect in advance abnormal produc-
tion conditions. 
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Rbbt: A Framework for Fast Bioinformatics
Development with Ruby

Miguel Vázquez, Rubén Nogales, Pedro Carmona, Alberto Pascual,
and Juan Pavón

Abstract. In a fast evolving field like molecular biology, which produces great
amounts of data at an ever increasing pace, it becomes fundamental the develop-
ment of analysis applications that can keep up with that pace. The Rbbt development
framework intends to support the development of complex functionality with strong
data processing dependencies, as reusable components, and serving them through a
simple and consistent API. This way, the framework promotes reuse and accessibil-
ity, and complements other solutions like classic APIs and function libraries or web
services. The Rbbt framework currently provides a wide range of functionality from
text mining to microarray meta-analysis.

1 Background

Molecular biology produces data in many different fields, and in great amounts.
There is a great potential for developing new analysis methods and applications by
either merging data from different sources, or by taking advantage of the large scale
of several data repositories. These applications are, however, hindered by the com-
plications in developing such systems, as they may require complex data processing
pipelines just to set up the application environment. The fact is that many application
that implement similar or closely related functionality end up having to roll up their
own processing back-end pipelines, which are often very similar to one another and
may actually account for a great portion of the development time. It would increase
the turnout on these applications if these processing pipelines where implemented
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in a clean and structured way such that they could be shared and reused between
different applications.

In fact, this approach would not only allow for sharing just these pipelines, but
would also allow for more sophisticated functionality to be exported as APIs, thanks
to the possibility to easily install and process the supporting data. Things like iden-
tifier translation, gene mention recognition and normalization, or annotation enrich-
ment analysis are good examples. The problem of providing APIs for these types
of functionality, those that are very data dependant, is partially solved by allowing
the necessary data files to be shipped along with the API. This solution, however,
does not apply well when the data is to large, or is not static, either because it must
be updated periodically, or because it must allow for some type of customization on
how it is produced.

One solution to this problem is to build our own ad-hoc back-end systems, and
export the functionality through the use of web services, such as those following the
SOAP and REST communication protocols. This approach has several advantages,
in particular, that the complexity of installing and administering the system falls
only over the system developers and not over the API users. It does, however, have
one important drawback with respect to classic APIs, other than possible reliability
or latency problems, and that is that open source API can be modified and adapted to
particular needs, while these web services are static, and their behaviour is entirely
controlled by the developers and maintainers of the application.

The solution proposed in this work, and implemented by the Rbbt framework, is
to develop the back-end processes in such a way that they can be shipped with the
API so that they can install, automatically, the complete execution environment on
the users system. This way, the users will have local access to the functionality while
still maintaining the possibility of altering the code to fit their needs. Furthermore,
by encapsulating all the complexity of the system behind a friendly to use top level
API interface, the user can include this functionality, otherwise very complex, easily
into their own scripts and applications, thus expanding the range of possibilities in
their own analysis workflows.

Another important benefit of this approach is that the users will have direct access
to the data used to provide the functionality, which can, in turn, allow for developing
other functionality over this same data. Actually, by having access to the actual
processing pipelines, these themselves can be adapted to process the data into any
other format that suits better to the needs of the user.

By following a set of design practices, the process of implementing new analysis
applications may leave behind a collection of such high-level functionality that can
then be reused in other applications. In this fashion, the SENT and MARQ appli-
cations [10, 11] ended up producing the functionality in Rbbt, which where then
expanded by including the functionality in Genecodis [6]. These functionality can
now be used to develop new applications very fast, as much of the heavy lifting has
already been done.



Rbbt: A Framework for Fast Bioinformatics Development with Ruby 203

2 Implementation

Since one of the main objectives was to offer a cohesive top level API that provided
access to all the functionality, we chose the Ruby language to implement that API.
Ruby is a versatile language that can be used for small processing scripts, very
much like Perl, but can also be used for web development using state-of-the-art
frameworks such as the popular Ruby-on-Rails. This way, the usefulness of the API
is maximized, since it can be used over the complete application stack, from small
maintenance scripts to large web sites.

Ruby can also interface fairly easily with other tools such as the R environment or
Java APIs. This allows the Rbbt API to wrap around these tools and offer their ser-
vices through the main API, thus helping reduce the complexity of the user code by
hiding it behind the API and data processing tools, which can take care of compiling
and installing third party software.

Rbbt is designed to serve functionality that otherwise could not be included in
classic API due to their strong data dependence. This means that the API must be
able to find this data locally on the system, which in turn, requires a configuration
tool that can take care of producing that data and installing it in the appropriate loca-
tions. We will refer to such locations as local data stores, and may include anything
from data files, to third party software, or sandboxes with training and evaluation
data to train models for machine learning methods. In fact, a few additional bene-
fits arise by coupling the API functionality with these data stores, for instance, the
possibility of implementing transparent caching strategies into the API.

The characteristics of data processing pipelines have similarities to compiling a
software program, where certain files are produced by performing particular actions
over their dependencies. So, for example, to produce a classifier for biomedical arti-
cles, one must build the model from the word vectors for positive and negative class
articles, these word vectors are derived in turn from the text of these articles, which
are themselves produced by downloading from PubMed the articles corresponding
to the PubMed identifiers that are listed as positive and negative classes. Changing
the way we compute the word vectors, for example, using a different statistic for
feature selection, should only require updating the files downstream. The classic
Make tool from UNIX offers a simple and clear way to define these dependencies
and production steps. One drawback of Make is its rigid syntax; for this reason in
Rbbt we use Rake, a Ruby clone of Make, that implements the same idea, but in
100% Ruby code, so that it can directly harness the full potential of the language,
including, of course, the Rbbt libraries.

Data files in the local data stores are preferably saved in tab separated format,
which is easy to parse, examine and modify using standard text editors. Only when
performance, or some other factor, becomes an issue a database or a key value store
should be used. This helps to maintain the interpretability and accessibility of the
data.
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3 Features

The Rbbt package includes a collection of core functionality to help accessing on-
line data, and managing the local data stores. These include access to online repos-
itories such as PubMed, Entrez, BioMart, The Gene Ontology, etc. Some of the
resources accessed through the Rbbt API, such as PubMed articles, or gene records
from Entrez, are cached to increase speed and reduce load on the remote servers.
Access to general online resources which are likely to be updated periodically is
also cached, but in a different type of non-persistent cache so that can be purged
easily when performing system updates.

For managing the data stores, Rbbt includes functionality to work with tab-
separated data files. These files often have an identifier in the first column and a
list of properties as the successive columns. The Rbbt API includes functions to
load this kind of files as a hash of arrays and merge several of such structures by
matching arbitrary columns, which is used for example to build the identifier trans-
lation files from data in different sources such as biomart and bach download files
from organisms specific databases.

Organism specific information. Rbbt uses a configuration file for each supported
organism to list all the details for processing the basic information. One of such re-
sources, for example, is the identifier file, which lists of the gene identifiers in some
particular format, followed by other equivalent identifiers for that gene in other for-
mats. In the case of yeast, for example, the native format is the SGD identifier, and
other supported formats include Entrez Gene, Gene Symbol, or several Affymetrix
probe id formats. These identifiers are retrieve from batch download files from or-
ganisms specific databases merged with informations gathered from BioMart and
Entrez gene. Also, the Rbbt lists Gene Ontology associations for each gene, com-
mon synonyms for gene names as can appear on the literature, and PubMed articles
associated to each gene derived from Entrez GeneRIF or GO association files. This
files are the seed for the rest of Rbbt functionality for that organism, from sim-
ple identifier translation to automatic processing of GEO datasets, or models for
gene mention and normalization, it all can be processed automatically once these
files are in place, which is done by just complete these simple configuration files.
Rbbt currently support 8 model organisms: Homo sapiens, Mus musculus, Rattus
norvegicus, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabdi-
tis elegans, Arabidopsis thaliana, and Candida albicans. Other organisms can be
easily included by just completing the information in their configurations files.

Text mining functionality in Rbbt includes building bag-of-words representa-
tions for documents, strategies for feature selection like TF-IDF or Kullback-Leibler
divergence statistics, document classification, and several strategies for named entity
recognition. In the last category are a general purpose named entity recognition sys-
tem using regular expressions, which, coupled with the Polysearch thesaurus can be
used to find mentions to diseases, cellular locations, and several other things. Rbbt
implements a special purpose named entity recognition system for genes, which is
also known as gene mention recognition [9], as well as a normalization [5] engine
that can be used to map the mentions into the corresponding genes. Both the gene
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mention recognition and the normalization tasks have specific sandboxes inside the
data stores with training and evaluation data to build and asses the models. Addi-
tionally, Rbbt wraps the Abner and Banner software APIs [7, 4] for gene mention,
with the same top level interface, so that they can be used interchangeably with its
in-house developed system. Our own gene mention system borrows most of its ideas
from Abner and Banner; it is based on conditional random fields [3, 8], trained using
CRF++ [2], but has a much simpler and flexible configuration system to define the
features.

Microarray Analysis in Rbbt includes automatic processing pipelines that can
compile a database of gene expression patterns from most of the thousands of
datasets available in GEO [1], as well as other GEO series or any other microarray
repository with a little configuration. This data consists of gigabytes of expression
data that can be used in meta analysis applications. It also supports automatic trans-
lation of probe ids from different platforms into a organism based common refer-
ence format that can be used to perform analysis across experiments using different
technologies. The API includes functionality to manage this automatic processing
pipelines, an R function library in charge of the actual automatic processing, so that
the data is easily used from this environment, and a collection of features to perform
rank based comparison for content based retrieval of similar signatures.

4 Examples of Use

To illustrate the simplicity of using the Rbbt library we will use two example tasks,
identifier translation of gene identifiers and gene mention recognition and normal-
ization. For more complete examples check the applications sample directory, or
the code for SENT and MARQ, which represent full blown applications using the
complete Rbbt API.

In order to have access to this functionality the user must only retrieve the rbbt
package, and run the processing pipelines to set up the necessary data and learning
models, which is done using the configuration tool packaged in Rbbt.

The first example, in listing 1, is a command-line application that can translate
gene identifiers for a given organism into Entrez Gene Ids. The input list of gene
ids, which is provided through standard input one line each, may be specified in
any of the supported gene id formats, which, for instance, in the case of H. sapiens
includes more than 34 different formats such as Ensemble Gene Ids, RefSeq, or
Affymetrix probes. The whole scripts boils down to loading the translation index
for the organism and the selected target format (Entrez Gene Id in this case), and
then using that index to resolve all our input ids.

The second example, in listing 2 (only relevant part is shown), is a command-
line application that, given an organism, and a query string, performs the query in
PubMed and finds mentions to genes in the abstracts of the matching articles. In this
case the task boils down to loading the gene mention engine (ner), the normaliza-
tion engine (norm), performing the query to find the list of articles (pmid), and then
going through the articles performing the following two steps: use the gene mention
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Listing 1 Translate Identifiers
� �

require ’rbbt/sources/organism’
require ’rbbt/sources/pubmed’

usage =<<-EOT
Usage: #{$0} organism

organism = Sce, Rno, Mmu, etc. See ’rbbt_config organisms’

You will need to have the organism installed. Example:
’rbbt_config prepare organism -o Sce’.

This scripts reads the identifiers from STDIN.

Example:
cat yeast_identifiers.txt | #{$0} Sce

EOT

organism = ARGV[0]

if organism.nil?
puts usage
exit

end

index =
Organism.id_index(organism, :native => ’Entrez Gene Id’)

STDIN.each_line{|l| puts "#{l.chomp} => #{index[l.chomp]}"}
� �

engine to find potential gene mentions in the articles text, which is basically the title
and abstract of the article, and then using the normalization engine to resolve the
mentions into actual gene identifiers, using the article text to disambiguate between
ties. The gene mention engine has several possible back-ends, Abner, Banner, and
our own in-house development RNER, all based on conditional random fields. If
RNER is used, the model for that specific organism must be trained, a process that,
while been rather lengthy, is completely automated using the configuration tool,
while still having room for customization, and needs only to be performed once. The
normalization engine needs no training, and also has ample room for configuration.

5 Conclusions

Open source APIs offer an inestimable resource for software developers. How-
ever, due to the complexity of bioinformatics analysis, this sharing was unfeasible
for many functionality due to the strong dependence in elaborate data processing
pipelines required to set up the applications environment. The use of web services
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Listing 2 Gene Mention Recognition and Normalization
� �

# Load data, this can take a few seconds
ner = Organism.ner(organism, :rner) # Use RNER
norm = Organism.norm(organism)

# Query PubMed. Take only the last ’max’ articles
pmids = PubMed.query(query, max.to_i)

# For each article:
PubMed.get_article(pmids).each{|pmid, article|

# 1. Find mentions
mentions = ner.extract(article.text)

# 2. Normalize them
codes = {}
mentions.each{|mention|

codes[mention] = norm.resolve(mention, article.text)
}

# 3. Print results
puts pmid
puts article.text
puts "Mentions: "
codes.each{|mention, list|

puts "#{ mention } => #{list.join(", ")}"
}
puts

}
� �

opens the possibility of offering an API over this functionality while hiding these
complex processes from the API user. However, web servers may suffer from unre-
liability or latency, and have much less room for adapting them to different circum-
stances. Rbbt has shown that the approach of constructing the processing pipelines
themselves so that they can set up the data stores automatically not only allows to
provide these same API locally, but has a number of additional benefits, in partic-
ular, more options in terms of modifying and adapting the code, reuse of the data
files, and reusing the processing pipelines for other tasks.

Rbbt has been successfully used, in whole and in part, in developing several pro-
duction ready applications. These applications where developed very fast with a
limited development group; Rbbt and agile development practices played a funda-
mental role in the their fast turnout.

The source code for the framework, as well as for several applications that use it,
can be accessed at http://github.com/mikisvaz.
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Analysis of the Effect of Reversibility 
Constraints on the Predictions of Genome-Scale 
Metabolic Models 

José P. Faria*, Miguel Rocha, Rick L. Stevens, and Christopher S. Henry 

Abstract. Reversibility constraints are one aspect of genome-scale metabolic 
models that has received significant attention recently. This study explores the im-
pact of complete removal of reversibility constraints on the gene essentiality and 
growth phenotype predictions generated using three published genome-scale 
metabolic models: the iJR904, the iAF1260, and the iBsu1103. In all three models, 
the accuracy in predicting essential genes declined significantly with the relaxa-
tion of reversibility constraints, while the accuracy in predicting nonessential 
genes increased only for the iJR904 and iAF1260 model. Additionally, the number 
of inactive reactions in all models declined substantially with the relaxation of the 
reversibility constraints. This study rapidly reveals the extent to which the reversi-
bility constraints included in a metabolic model have been optimized, and it indi-
cates those incorrect model predictions that may be repaired and those correct 
model predictions that may be broken by increasing the number of reversible reac-
tions in a model. 

1   Introduction 

In recent years, Flux Balance Analysis (FBA) and genome-scale metabolic models 
are increasingly being used as a means of predicting the metabolic capabilities of 
an organism based on knowledge of the biochemical interactions taking place in 
the organism’s metabolic pathways. These models are capable of predicting essen-
tial genes, growth phenotypes, culture conditions, and metabolic engineering strat-
egies [1]. Additionally, the number of models available for analysis is rapidly 
growing. Currently, models have been published for over 20 microorganisms [2], 
with new high-throughput reconstruction methods emerging capable of producing 
thousands of draft models in a single year [3]. 
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One aspect of genome-scale metabolic models that has received significant at-
tention recently is the reversibility constraints governing the direction(s) of opera-
tion for all reactions included in the model. In the first genome-scale metabolic 
models, these constraints were based largely on data available in biochemical da-
tabases and knowledge of pathway directionality in well-known metabolic subsys-
tems (e.g. glycolysis) [4, 5]. More recently, methods have emerged for predicting 
reaction reversibility/directionality based on thermodynamics and simple heuristic 
rules [6-8]. Finally, methods are available for adjusting reaction reversibil-
ity/directionality constraints to fit model predictions to available experimental 
phenotype data [9, 10]. All of this work demonstrates the impact that small tar-
geted changes to model reversibility constraints have on the accuracy of model 
predictions. Here, we explore the impact of complete removal of reversibility con-
straints on the gene essentiality and growth phenotype predictions generated using 
three published genome-scale metabolic models: the iJR904 [4], the iAF1260 [11], 
and the iBsu1103 [6]. The iJR904 and iAF1260 are both metabolic models of E. 
coli K12. The iJR904 model includes 931 reactions encompassing 904 ORFs; the 
iAF1260 model is a substantial expansion over the iJR904, including 2059 reac-
tions and encompassing 1260 ORFs. The iBsu1103 model was created for B. sub-
tilis 168 and includes 1437 reactions encompassing 1103 ORFS. The iBsu1103 
model was optimized using the GrowMatch [9] method, in contrast to the E. coli 
models, which were manually optimized. This study is part of a larger study ex-
amining the impact of thermodynamic, regulatory, and reversibility constraints on 
the predictions from multiple genome-scale metabolic models. 

2   Methods 

2.1   Flux Balance Analysis (FBA) 

Flux balance analysis (FBA) is a constraint-based simulation method used to de-
fine the limits on the metabolic capabilities of a microorganism [12-14]. In FBA, 
the interior of the cell is assumed to be in a quasi-steady-state, meaning that the 
net production/ consumption of each internal metabolite is zero. Based on this as-
sumption, linear constraints are established on the flux through each reaction in-
volved in the organism metabolism. Reaction fluxes are further constrained based 
on knowledge of the reversibility and directionality of the metabolic reactions, de-
termined from thermodynamics [6-8]. A linear optimization is then performed 
with these constraints, such that a given metabolic objective function (often cell 
growth [15]) is maximized subject to the mass balance constraints, the reversibil-
ity constraints, and the availability of nutrients in the media. Gene knockouts may 
also be simulated by blocking all flux through metabolic reactions that are associ-
ated with the knocked out genes. Media conditions are set by restricting the com-
pounds that can be consumed from the environment by the model reactions. 
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2.2   Classification of Reactions Using Flux Variability Analysis 

Flux variability analysis (FVA) is an FBA-based method for characterizing the 
multiple feasible states of genome-scale metabolic models and for classifying the 
model reactions according to their behavior during simulated growth [16]. The re-
action classification is derived from the minimization and maximization of flux 
through each model reaction while constraining the biomass production in the 
model to a minimal growth rate. Reactions with a minimum and maximum flux of 
zero are classified as blocked in the simulated conditions; reactions with a nega-
tive maximum flux or positive minimum flux are classified as essential in the si-
mulated conditions; and all other reactions are classified as active. 

3   Results 

3.1   Impact of Reversibility Constrains on Model Accuracy 

In order to study the effect of reversibility constraints on the accuracy of genome-
scale metabolic model predictions, two genome-scale metabolic models of E. coli 
K12 (iJR904 [4] and iAF1260 [11]) and one genome-scale metabolic model of B. 
subtilis 168 (iBsu1103 [6]) were utilized to predict the outcome of gene essential-
ity and Biolog growth phenotype experiments. These models were selected for 
analysis because they represent two of the most-well-studied prokaryotic organ-
isms, one gram positive and one gram negative. Also, genome-wide gene essen-
tiality and Biolog phenotyping array data are readily available for both of these 
organisms. Essentiality data is available for E. coli K12 in three distinct media 
conditions: Luria-Bertani media, glucose minimal media, and glycine minimal 
media [17, 18]. Essentiality data is also available for B. subtilis 168 in one culture 
condition: Luria-Bertani media [19].  

The metabolic models were utilized to perform gene knockouts in silico, while 
simulating all culture conditions where experimental data is available. Knockouts 
were performed while enforcing and relaxing (by making all reactions reversible) 
the reversibility constraints included in each model. Predictions were then com-
pared with experimental data to assess accuracy with and without reversibility 
constraints (Table 1). In all three models, the accuracy of gene essentiality predic-
tions declined significantly with the relaxation of reversibility constraints, while 
the accuracy in predicting nonessential genes increased only for the iJR904 and 
iAF1260 models. This relaxation of reversibility constraints consists of making all 
model reactions reversible.  

Biolog phenotyping arrays [20] have also been constructed and utilized to study 
the ability of E. coli K12 and B. subtilis 168 to metabolize 324 and 242 distinct 
carbon, nitrogen, phosphate, and sulfate sources respectively. The iJR904, 
iAF1260, and iBsu1103 models were used to replicate these Biolog growth condi-
tions in silico, while enforcing and relaxing the reaction reversibility constraints; 
all predictions were then compared against the experimental Biolog data (Table 1). 
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In these studies, the accuracy of all three models in predicting the metabolized 
Biolog nutrients improved with the relaxation of reversibility constraints, while 
accuracy in predicting un-metabolized nutrients declined. However, the improve-
ment in the prediction of metabolized nutrients was much more substantial for the 
iJR904 and iAF1260 models than for the iBsu1103 model. 

Table 1 Accuracy of Model Predictions with and without Reversibility Constraints 

 iJR904*  iAF1260*  iBsu1103*  

Reversibility constraints ON OFF ON OFF ON OFF 

Biolog conditions with 
growth  

77/194 
(40%) 

99/194 
(51%) 

114/194 
(59%) 

130/194 
(67%) 

138/169 
(82%) 

142/169
(84%) 

Biolog conditions with no 
growth 

106/130 
(82%) 

79/130 
(61%) 

98/130 
(75%) 

71/130 
(55%) 

68/73 
(93%) 

50/73 
(68%) 

Essential metabolic genes 340/518 
(66%) 

229/518 
(44%) 

392/615 
(64%) 

99/615 
(16%) 

192/215 
(89%) 

166/215
(77%) 

Non-essential metabolic 
genes 

2000/2137 
(94%) 

2057/2137 
(96%) 

3053/3165 
(95%) 

3155/3165 
(100%) 

873/888 
(98%) 

873/888
(98%) 

Overall accuracy 82.1% 80.2% 89.1% 84.2% 94.5% 91.5% 

*Gene K.O. simulation results represent the aggregate of 3 media conditions (Luria-Bertani 
media, glucose minimal media, and glycine minimal media [17, 18]). 

3.2   Impact of Reversibility Constraints on Reaction Behavior 

Another measure of model quality is the number of inactive reactions in the 
model. Many reactions are supposed to be inactive during growth on certain con-
ditions. For example, reactions involved in glycine metabolism should be inactive 
during growth on glucose minimal media. However, other reactions are inactive 
because they either exclusively lead to or are derived from a dead end in the meta-
bolic network.  

We utilized FVA to identify inactive reactions in the iJR904, iAF1260, and 
iBsu1103 models during minimal simulated growth in complete media. In com-
plete media, any transportable nutrient is allowed to be taken up by the cell, mak-
ing it the least restrictive media condition possible. The advantage of performing 
FVA on complete media is that this enables as many reactions as possible to be 
active since no uptake pathways are blocked. Thus, reactions identified as inactive 
in complete media represent those reactions that will never carry flux because they 
exclusively lead to or are derived from a dead-end metabolite. In some cases, 
these dead-ends can be eliminated with the relaxation of reversibility constraints. 
To identify these dead-ends, we repeated the FVA reaction classification to iden-
tify reactions that are no longer inactive with reversibility constraints relaxed 
(Figure 1). In all three models, the number of inactive reactions declined substan-
tially with the relaxation of the reversibility constraints. 
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Fig. 1 Number of inactive, active and essential reactions with reversibility constraints 
turned “ON” and “OFF” 

4   Discussion 

The results of our analysis of the effect of reversibility constraints on the accuracy 
of model predictions demonstrated that complete relaxation of reversibility con-
straints always results in a substantial decline in accuracy. However, the results 
also reveal that many cases where no growth is predicted and growth is observed 
(false negative predictions) can be corrected with the relaxation of reversibility 
constraints alone. More rigorous optimization techniques are available [9, 10] for 
identifying exactly which reactions should be made reversible to correct these 
predictions; however, this simple study provides a bulk estimate of how effective 
such efforts will be and it identifies the exact conditions on which such efforts 
should be applied. This study also reveals the correctly predicted zero-growth 
conditions that are vulnerable to being broken by the adjustment of reversibility 
constraints. Both pieces of information can be used to substantially simplify pro-
cedures for optimizing reaction reversibility constraints in models to fit experi-
mental data.  

Another interesting result can be derived from contrasting the effect of the re-
versibility constraints on the iJR904 and iAF1260 models versus the iBsu1103 
model. While in all three models, the number of false negative predictions de-
clined with the relaxation of reversibility constraints, the decline was much more 
substantial in the E. coli models compared with the iBsu1103 model.  Meanwhile, 
the rise in false positive predictions with the relaxation of reversibility constraints 
was comparable in all three models. This ratio of errors corrected over errors cre-
ated with the relaxation of reversibility constraints can be used as a measure of the 
extent to which a genome-scale metabolic model has been optimized. Thus, the  
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reversibility rules in the iBsu1103 model, which was optimized during reconstruc-
tion using the GrowMatch method, show a greater extent of optimality compared 
with the reversibility rules in the iAF1260 and iJR904 models, which underwent 
manual optimization only. 
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Enhancing Elementary Flux Modes Analysis
Using Filtering Techniques in an Integrated
Environment

Paulo Maia, Marcellinus Pont, Jean-François Tomb, Isabel Rocha,
and Miguel Rocha

Abstract. Elementary Flux Modes (EFMs) have been claimed as one of the most
promising approaches for pathway analysis. These are a set of vectors that emerge
from the stoichiometric matrix of a biochemical network through the use of convex
analysis. The computation of all EFMs of a given network is an NP-hard problem
and existing algorithms do not scale well. Moreover, the analysis of results is diffi-
cult given the thousands or millions of possible modes generated. In this work, we
propose a new plugin, running on top of the OptFlux Metabolic Engineering work-
bench, whose aims are to ease the analysis of these results and explore synergies
among EFM analysis, phenotype simulation and strain optimization.

1 Introduction

Over the last few years, a growing number of genome-scale metabolic models for
different organisms have been reconstructed, based on the information contained in
their annotated sequenced genomes, on the application of Bioinformatics tools and
on physiological data. Given the major difficulties in obtaining the kinetic param-
eters for the whole set of reactions and also in reaching reliable regulatory infor-
mation, most methods rely on the analysis of the network stoichiometry, using a
constraint-based approach to reach some conclusions and to achieve the phenotypic
simulation of the system.
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Metabolic models and stoichiometric network analysis have been successfully
used to address tasks such as assessing the network’s capabilities (e.g. determin-
ing maximal product yields), network design (e.g. studying the effects of adding/
removing reactions), analysis of functional pathways, analysis of network consis-
tency, flexibility or robustness, among others [13]. One of the major application
fields of stoichiometric network analysis has been Metabolic Engineering (ME), a
field that deals with designing organisms with enhanced capabilities regarding the
productivities of desired compounds [12]. Recently, we have developed OptFlux
[6], a new computational platform for ME, based on stoichiometric network anal-
ysis and constraint-based approaches. The platform implements the major methods
related to phenotypical simulation using steady state approaches, such as Flux Bal-
ance Analysis (FBA) [3], where a flux distribution that obeys the constraints and
maximizes a pre-defined biomass flux is obtained. Also, the platform provides al-
gorithms for strain optimization (e.g. identifying the set of reactions to delete from
a model in order to maximize a given objective function).

In contrast to this approach, and though also based on stoichiometric network
analysis, the field of Pathway Analysis (PA) characterizes the complete space of
admissible flux distributions. PA allows the analysis of meaningful routes involved
in metabolic networks. In the recent past, two closely related approaches were de-
veloped; namely, Elementary Flux Modes (EFMs) [8] and Extreme Pathways (EPs)
[7]. Both approaches aim to dissect metabolic networks into basic functional units
and provide means to understand their behavior.

Given the importance of PA within the stoichiometric analysis framework, this
paper reports on the development of a software tool that addresses the major tasks
within PA. This tool is developed within the OptFlux project as a new plug-in. The
main aims of this work are (i) to enhance the ME capabilities of the OptFlux plat-
form using EFM analysis and (ii) to provide a graphical user interface to one of the
most effective libraries in the computation of EFMs.

2 Elementary Modes

In this paper, we will use a purely structural analysis of biochemical networks,
where the network is represented by: q internal compounds (metabolites), m re-
actions and a stoichiometric matrix N with dimensions q×m. The rows of N corre-
spond to the compounds, while the columns represent reactions; the elements of the
matrix in row i and column j represent the stoichiometric coefficient of compound
i in reaction j. The framework also allows the definition of external metabolites,
thought to be sinks or sources, which lie outside the system. Also, reactions are de-
fined to be reversible or irreversible. Figure 1 provides a simple example extracted
from [13] with 6 internal metabolites and 10 reactions; also, this network has 4
external metabolites.

In a steady-state situation, the mass-balance in the network can be represented by
the equation:

Nv = 0 (1)
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Fig. 1 The simple network used in this case study. N : q × m is the stoichiomet-
ric matrix where each row corresponds to one species and each column to one of
the reactions. The reversibility information is given by rev = {R2,R8} and irrev =
{R1,R3,R4,R5,R6,R7,R9,R10}, where rev is the set of reversible reactions and irrev is
the set of irreversible ones. Also notice that rev∩ irrev = /0

where v is a vector with the fluxes through the set of reactions. Irreversible reactions
are represented by including constraints in the form:

vi ≥ 0 (2)

The set of all flux vectors that obey the constraints imposed by equations 1 and 2
represent a convex polyhedral cone or a flux cone in stoichiometric studies.

In this context, Elementary Flux Modes (EFMs) are flux vectors composed of q
elements (e1,e2, . . . ,eq), that fulfill the following conditions [8]:

1. Pseudo steady state: Ne = 0, i.e. all EFMs obey equation 1;
2. Feasibility: all irreversible reactions proceed in the forward direction, i.e. ei ≥ 0

if reaction i is irreversible (equation 2);
3. Non-decomposability: EFMs represent the minimal functional units in the net-

work, therefore no reaction can be deleted from an EFM while maintaing a valid
flux distribution (that satisfies equations 1 and 2)

This definition imposes the following important properties: (i) there is a unique set
of EFMs for a given network; (ii) all feasible steady state flux distributions (that
satisfy equations 1 and 2) are a nonnegative superposition of the set of EFMs in the
network; (iii) when removing a reaction from the network, the set of EFMs for the
new network is equal to the one for the original network but removing all EFMs that
include the reaction that was deleted.

Extreme Pathways (EPs) are closely related to EFMs. They are a subset of the
EFMs calculated over a reformulated network. Given the similarity of the two con-
cepts, EPs will not be further addressed in this paper nor in the current version of
the plug-in.

EFMs are a very useful tool for the analysis of a metabolic network, since they
provide the portfolio of all elementary functional units. Thus, EFM analysis can be
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used, among others, in the following tasks: (i) identify all routes (pathways) that
convert a substrate into a given product and also identify the ones with maximal
yield; (ii) identify the importance of reactions in a given context and the corre-
lated reactions; (iii) predict the effect of reaction deletions and viability of resultant
mutants.

Since the number of EFMs grows exponentially with the network size, the com-
putation of the whole set of EFMs for a metabolic network is a very hard problem.
Several algorithms have been proposed to calculate EFMs (or EPs). They are mostly
based on approaches that solve the equivalent problem of extreme ray enumeration
from computational geometry. The developed algorithms that solve this problem are
typically based on the double description method and can be grouped into two major
approaches: the canonical basis approach [8] and the nullspace approach [16], which
introduced simplifications in the algorithm and lead to an improved performance.

To further boost the performance, binary vectors were proposed [1] to store the
processed reactions in each EFM, reducing memory demands and facilitating set
operations. Also, rank computations were introduced to test elementarity in a di-
vide and conquer strategy. Finally, Terzer and Stelling [14] introduced bit pattern
trees to index subsets during elementarity testing and also the concept of candidate
narrowing using a recursive enumeration approach.

When discussing software tools for EFM calculation, the METATOOL applica-
tion is a reference [15]. METATOOL was developed in MatLab and has been quite
popular since its first version in 1998. It is also included in other more compre-
hensive packages such as YANASquare [9] or CellNetAnalyzer [5]. More recently,
the EFMTool was developed [14] using the Java language (but including a wrapper
allowing it to run over MatLab). This is a library that implements a very efficient
algorithm for EFM enumeration. This most effective approach is currently available
through a command line interface. A major objective of our work is to provide a
graphical user interface to enable easy access to the EFMTool.

3 Efm4Optflux – An EMA Plugin for the OptFlux Workbench

The need for a rational approach to analyze results generated by the EFM calcula-
tion algorithms was the driver behind the creation of a plug-in within the OptFlux
ME platform. OptFlux is a freely available open-source software. It was developed
in a modular fashion to facilitate the addition of new features (plug-in based archi-
tecture), it is compatible with the Systems Biology Markup Language (SBML) [2]
and the layout information of Cell Designer [4]).

In the current version (2.0), the software accommodates several tools that have
been developed for the analysis of metabolic models. It incorporates methods for
phenotype simulation, such as Flux Balance Analysis, Minimization of Metabolic
Adjustment [10] and Regulatory on/off minimization of metabolic flux changes
[11], as well as strain optimization algorithms, such as Evolutionary Algorithms
and Simulated Annealing. It also packages a suitable model visualization tool.



Enhancing EFMA Using Filtering Techniques in an Integrated Environment 221

In this work, we present an extension to OptFlux, a plug-in that provides graphi-
cal access to the EFMTool calculation and analysis capabilities. The plugin delivers
several interesting characteristics such as a simple graphical user interface (GUI)
and state-of-the-art EFM calculation. It also allows filtering of the results based on
an intuitive form, allowing the definition of patterns with presence/absence of ex-
ternal metabolites. The organization of the filtered results is done by grouping the
EFMs with unique net conversions.

After the calculation of the EFMs, each EFM vector is multiplied by the sub-
matrix component of the full stoichiometric matrix containing only the rows relative
to the external metabolites, thus returning the vectors of net conversions. These are
scanned and only unique conversions are maintained. All the results are kept in disk
in order to ease the memory burden of some EFM computations. The EFMs are kept
in one file, the net conversions in another and a lookup table is generated, in a third
file, to correlate between them.

Furthermore, for each net conversion, the greatest common divisor is calculated
to improve the reading of the conversion equation. To do so, all the coefficients have
to be integers and therefore the EFM calculation is limited to using big integer arith-
metics. In the filtering step, the software filters EFMs based on the presence/absence
of external metabolites in the net conversions. Moreover, it can also order by yield,
providing an input and output metabolite is provided for the computation. When
the filters have been defined, the software scans the definition files for compatible
conversions and their related EFMs.

The user can browse through the filtered conversions in an intuitive table that
presents the conversion equation and yields and provides access to the related EFMs.
The visualization of these EFMs is presented in a column-wise table, where each
column corresponds to an EFM and each line to a reaction of the model.

Moreover, the user can export the EFM values to CellDesigner, if a valid CellDe-
signer SBML file had been previously loaded. The values for each reaction in the
mode vector are represented by the thickness of the lines in the CellDesigner layout.
This thickness varies between a user-defined range and it is relative to the value.

4 Case Study

We present the plugin capabilities, following a simple example from [13]. This net-
work is presented in Figure 1. This example is provided in the project homepage
(www.optflux.org) as a CellDesigner SBML file.

In order to compute the EFMs for this network, the following steps were required:

1. Load the file Stelling_toy.xml using the New Project Wizard. Select SBML,
CellDesigner SBML and default options until the end of the wizard;

2. To execute the EFMs computation, access Plugins → Elementary Modes →
Compute Elementary Modes and use all the default options. This computation
is instantaneous in any regular PC;
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3. Clicking the new datatype placed on the clipboard will launch a generic viewer.
Press Proceed to filtering and a filtering dialog will appear. In this dialog we
selected every filter as Don’t Care and the yield as A_ext→ P_ext.

4. A FilteredEFMResults instance will be placed on the clipboard. Clicking it will
launch the viewer (Figure 2).

Fig. 2 Screenshot of the Filtered Results Viewer. A total of 5 unique conversions were discov-
ered by the algorithm. These are listed together with the conversion equation and respective
yields. BCY = Biomass/product Coupled Yield; SPY = Substrate to Product Yield; SBY =
Substrate to Biomass Yield

The computation resulted in a total of 8 EFMs and 5 unique net conversions. The
EFMs were exported to CellDesigner and the results were compared and validated
with the ones obtained in [13]. A graphical representation of the layout in CellDe-
signer is presented in Figure 3.

5 Conclusion

Despite several incursions regarding the computation of EFMs, no real efforts have
been made to ease analysis of the results. The proposed plug-in provides a seamless
integration with the OptFlux ME workbench, thus providing a rational interface
and smart filters to analyze the large number of EFMs that usually generated in
such analysis approaches. There is, however, still much space for improvement,
namely regarding the arithmetics allowed by the platform. The limitation to integers,
though consistent with the display mode, is nevertheless, a limitation. Other ways
of filtering and sorting the calculated EFMs are also currently under development.

Acknowledgements. The authors wish to thank the financial support of the Portuguese FCT
for the Ph.D grant SFRH/BD/61465/2009 and the company Dupont under the scope of the
Dupont European University Support Program Award.
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Fig. 3 Graphical representation of the EMs associated with each unique net conversion.
The numbers are the Conversion IDs depicted in Figure 2. The conversions are the follow-
ing: 0 :A_ext → P_ext, 1 :A_ext → B_ext, 2 :2A_ext → P_ext + E_ext , 3 :B_ext + A_ext →
P_ext +E_ext, 4 :B_ext→ P_ext
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Genome Visualization in Space 

Leandro S. Marcolino*, Bráulio R.G.M. Couto, and Marcos A. dos Santos 

Abstract. Phylogeny is an important field to understand evolution and the organi-
zation of life. However, most methods depend highly on manual study and analy-
sis, making the construction of phylogeny error prone. Linear Algebra methods 
are known to be efficient to deal with the semantic relationships between a large 
number of elements in spaces of high dimensionality. Therefore, they can be use-
ful to help the construction of phylogenetic trees. The ability to visualize the rela-
tionships between genomes is crucial in this process. In this paper, a linear algebra 
method, followed by optimization, is used to generate a visualization of a set of 
complete genomes. Using the proposed method we were able to visualize the rela-
tionships of 64 complete mitochondrial genomes, organized as six different 
groups, and of 31 complete mitochondrial genomes of mammals, organized as 
nine different groups. The prespecified groups could be seen clustered together in 
the visualization, and similar species were represented close together. Besides, 
there seems to be an evolutionary influence in the organization of the graph.  

1   Introduction 

Phylogeny is a very important field to understand evolution and the organization 
of life. However, many molecular phylogenies are built using sequences sampled 
from only a few genes. Besides, most methods depend highly on manual study and 
analysis, making the construction of phylogeny based on whole genomes difficult 
and error prone. The problem of analyzing genomes, however, is very similar to 
information retrieval from a large set of documents. In both problems, it is neces-
sary to deal with an enormous amount of information, and to find semantic links 
between data. Fortunately, there are very good algorithms to deal with information 
retrieval. Singular value decomposition (SVD), for example, is used with great 
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success (Berry et al.  1994). For example, linear algebra methods are used even by 
Google, enabling a better comprehension of a system as complex as the Internet 
(Eldén 2006; Stuart et al. 2002) presents a method to build phylogeny trees using 
SVD to analyze genomes. The method is demonstrated with vertebrate mitochon-
drial genomes, and is later used to analyze whole bacterial genomes and whole 
eukaryotic genomes (Stuart and Berry 2004). Linear algebra methods are also used 
to study the different genotypes in the human population (Huggins et al. 2007). 

Visualization techniques are essential to better analyze complex systems and 
can be very helpful to categorize species. There are a number of visualization tools 
to study a single genome (Lewis et al. 2002; Engels et al. 2006; Rutherford et al. 
2000; Stothard and Wishart 2005; Gibson and Smith 2003; Ghai et al. 2004). 
However it is desirable to visualize the relationships between a set of genomes, in 
order to better comprehend the species. In Xie and Schlick (2000) is presented a 
visualization technique using SVD to analyze chemical databases. In this paper, 
we used that technique as a basis to develop a method for using genomes to visu-
alize relationships among species in space (2D and 3D). This can facilitate the 
construction of phylogeny trees, enabling the analyzer to quickly have insights in 
the similarities between the different species. We are going to show the results of 
our approach using 832 mitochondrial proteins obtained from 64 whole mitochon-
drial genomes of vertebrates. 

2   Material and Methods 

2.1   Sequence Data 

We used the same set of proteins as Stuart et al. (2002), 64 whole mitochondrial 
genomes from the NCBI genome database, each one with 13 genes, totaling 832 
proteins in the data set.  The  following  species  were  used  in  this paper: Alliga-
tor mississippiensis, Artibeus jamaicensis, Aythya americana, Balaenoptera mus-
culus,  Balaenoptera physalus,  Bos taurus,  Canis familiaris, Carassius auratus, 
Cavia porcellus, Ceratotherium simum, Chelonia mydas,  Chrysemys picta,  Cico-
nia boyciana,  Ciconia ciconia, Corvus frugilegus, Crossostoma lacustre,  Cypri-
nus carpio,  Danio rerio, Dasypus novemcinctus, Didelphis virginiana, Dinodon 
semicarinatus, Equus asinus,  Equus caballus, Erinaceus europaeus, Eumeces 
egregius, Falco peregrinus, Felis catus, Gadus morhua, Gallus gallus, Halichoe-
rus grypus, Hippopotamus amphibius, Homo sapiens, Latimeria chalumnae, 
Loxodonta africana, Macropus robustus, Mus musculus, Mustelus manazo, My-
oxus glis, Oncorhynchus mykiss, Ornithorhynchus anatinus, Orycteropus afer, 
Oryctolagus cuniculus, Ovis aries, Paralichthys olivaceus, Pelomedusa subrufa, 
Phoca vitulina, Polypterus ornatipinnis, Pongo pygmaeus abelii, Protopterus dol-
loi,  Raja  radiata,  Rattus  norvegicus,  Rhea  americana, Rhinoceros unicornis, 
Salmo salar, Salvelinus alpinus, Salvelinus fontinalis, Scyliorhinus canicula,  
Smithornis sharpei,  Squalus acanthias,  Struthio camelus, Sus scrofa, Sciurus 
vulgaris, Talpa europaea, and Vidua chalybeata. 
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2.2   Representation Method 

In order to visualize the genomes, we must represent each one as a point in space. 
The distance between the points should represent the differences in the genomes 
as a whole. Therefore, we might expect similar species to be close together in 
space. The genome proteins were represented as vectors of frequencies of groups 
of amino acids. In this paper, a sliding window of size 3 was used to measure the 
frequency. To represent the genome we used the vector sum of all its proteins. We 
are going to evaluate the appropriateness of this representation in the sequence. 
Therefore, we can obtain a database of genomes, S, as a rectangular matrix, X, 
where each line corresponds to one of the n genomes: 
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As can be seen, the representation cannot be visualized in this high-dimensional 
space. With 20 amino acids, and considering that unknown amino acids are repre-
sented as a separated letter of the alphabet, each genome vector has m = 213 = 9, 
261 dimensions. Therefore, to generate a suitable visualization, it is necessary to 
reduce the dimensionality of the space, with the minimum loss of information. 
When a representation in reduced space, Y, is generated for the database matrix X, 
we can calculate an error function E as following: 

( )∑∑ −=
i j

ijijE 2γδ   

where δij is the euclidean distance between genome i and j in the original space,  
represented in the matrix X,  and γij  is the euclidean distance between genome i 
and j in the reduced space,  represented in the matrix Y . The best representation 
of S in the reduced space will be the Y with the minimal associated error function.  
Therefore, we must solve an unconstrained optimization problem. Many methods 
can be used to solve this problem.  In Xie and Schlick (2000), the truncated-
newton minimization method is used. In this paper, we used a technique based on 
the interior-reflective Newton method. Singular value decomposition (SVD) is a 
popular method to reduce the dimensionality of a space, keeping the fundamental 
semantic association among the vectors in that space.  Therefore, a  good  initial  
solution for the optimization problem can be obtained using the singular value de-
composition (SVD) of X . The matrix is represented as X  = UΣVT , where U =  
[u1 u2  . . . up],   Σ  =   diag(σ1, σ2, . . . , σp), V = [v1 v2 . . . vp]. An approximation of 
X in reduced space (Xk) is given by: 
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In this paper, we generated both two and three dimensional representations. We 
used a rank 2 approximation of X as the initial solution for the former, and a rank 
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3 approximation as the initial solution for the latter. After the optimization proce-
dure, we have the best representation of the genomes to be visualized in a reduced 
space. 

3   Results and Discussion 

We used the proposed approach to generate two and three dimensional visualiza-
tions of 64 whole mitochondrial genomes with 832 proteins.  First, we are going to 
evaluate if the euclidean distance of genomes using the chosen representation is 
suitable to evaluate the similarities between them. Couto et al. (2007) showed that 
the similarity of genome sequences can be measured by the euclidean distance in 
a reduced dimensional space of tripeptides descriptors. They found a correlation 
between the euclidean distance and global distance sequence alignment of +0.70. 
To perform a similar analysis we created 64 supersequences by concatenating the 
13 genes from each organism.  These supersequences were compared by using 
global edit distance between each pair of sequences and euclidean distance in the 
high-dimensional space. As in Couto et al. (2007), the correlation between the edit 
distance and euclidean distance was +0.70, but this time in a cubic model (P   < 
0.01; Figure 1). We can see, therefore, that the euclidean distance of genome se-
quences using the chosen representation can be used as a measure of similarity. 

 

 
 

Fig. 1 Scatter plot of euclidean distance and global edit distance 

We classified the species according to the class.  Therefore, the following 
groups were used: Aves, Mammalia, Reptilia, Actinopterygii, Sarcopterygii, Chon-
drichtyes. In Figure 2 we can see the 2D and 3D results. As can be observed, the 
different class had a tendency to form groups in space. In the 2D graph we can see 
that mammals (mammalia) are  in  the  bottom,  birds  (aves)  are  in  the  upper  
left,  reptiles (reptilia) are generally in the middle left, and fishes (actinopterygii, 
sarcopterygii, chondirchthyes) are in the upper right. It is notorious how the birds 
are close together in a single cluster. In the results in 3D the classes are even better 
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clustered. This time, reptiles, birds and fishes are in distinctly separated groups. 
Only the class of the fishes are somewhat mixed.  
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Fig. 2 Visualization of genomes in 2D and in 3D 

It is interesting to observe the relationships between the classes, as similar 
groups tend to be near in space. The position of the class in the graphs seems to be 
related to the evolutionary scale. Considering the 2D graph as an ellipse, we can 
see that the reptiles are between the mammals and the fishes. In 3D this can be  
observed a second time. However, the evolutionary relationship between reptiles 
and birds is more clear in 3D, as there is no group between them. 
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Both in 2D and in 3D, mammals form a clearly distinct group from all other 
classes. They occupy a vast area, which might indicate more extensive diversity. 
We can also note that some mammals form clusters, what might be interesting to 
analyze. In order to better explore how the mammals are organized we separated 
this class in nine different groups: (i) Prototheria, corresponding to species in this 
subclass; (ii) Marsupialia, corresponding to species in this infraclass; (iii) Chirop-
tera, corresponding to species in this ordo; (iv) Cetartiodactyla, corresponding to 
species in this superordo; (v) Carnivora, corresponding to species in this ordo;  
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Fig. 3 Approximation of the region of the mammals in 2D and in 3D 
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(vi) Perissodactyla, corresponding to species in this ordo; (vii) Primates, corre-
sponding to  individuals  in  this  ordo;  (viii)  Rodentia,  corresponding  to indi-
viduals in this ordo; (ix) Placentalia, corresponding to all other individuals that 
are in this infraclass, but were not classified in any other group. In Figure 3 we can  
see an approximation of the region of the mammals with this new classification. 
Similar species appeared close together, as was expected. This shows another ad-
vantage of the proposed method: as each genome is represented as points in space, 
we can easily select a region to better explore, zooming in and out in the graph as 
appropriate for the analysis. 

The proposed method, however, allows another way to visualize a selected 
group of genomes. We can reduce the original set and run the algorithm a second 
time. Therefore, in order to better visualize the mammals, we executed the algo-
rithm with only this class in the database. The result can be seen in Figure 4. It is 
interesting to note that the 2D graph has a similar elliptic format as in Figure 2. 
Clusters that were difficult to observe in Figure 3 are very clear in this graph. 
Similar species are again near to each other, showing visually the proximities of 
the genomes. In 3D the only group that mixed with the others is the Placentalia, 
but this was expected, as this group is very general, holding greatly different indi-
viduals. All other groups occupy distinct positions in space. We can see, therefore, 
that the proposed method allows many interesting observations and analysis of a 
group of genomes. Prespecified groups could be seen as clusters in the resulting 
graphs and the positions of the species seem to be related to their evolutionary 
stage. We also showed how approximating a region of the graph or running the al-
gorithm a second time with a reduced data set allows a better insight of the rela-
tionships among selected groups of genomes. The resulting graphs can be gener-
ated both in two and in three dimensions for visualization. 
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Fig. 4 Visualization of a reduced set in 2D and 3D 
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4   Conclusion 

In this paper, we used a linear algebra method, followed by optimization, to visualize 
genomes in two and in three dimensional spaces. A set of complete mitochondrial 
genomes were used to test the algorithm. Graphs were generated to visualize the 
complete set and a reduced set of similar species. We noted that the method was able 
to automatically cluster some of the predefined groups and biologically similar spe-
cies were represented as near points in space. We also noted that the position of the 
genomes in space seems to be related to the evolutionary stage of the species. Our  
future work is directed towards using this mechanism to visualize a large set of pro-
teins. In this way, relationships between them can be easily observed and quickly ex-
plored, facilitating new discoveries. It would also be interesting to use this technique 
to explore a vast number of genomes, and further explore how it can be used to gain 
insight in evolution and in the phylogenetic relationships between the species. 
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A Hybrid Scheme to Solve the Protein Structure
Prediction Problem

José C. Calvo, Julio Ortega, and Mancia Anguita

Abstract. This paper proposes an approach to the protein structure prediction (PSP)
problem that inserts solutions provided by template-modeling procedures as indi-
viduals in the population of a multi-objective evolutionary algorithm. This way, our
procedure represents a hybrid approach that takes advantage of previous knowledge
about the known protein structures to improve the effectiveness of an ab initio pro-
cedure for the PSP problem. Moreover, the procedure benefits from a parallel and
distributed implementation that allows faster and wider exploration of the confor-
mation space. The experimental results obtained from the present implementation of
our procedure show improvements with respect to previously proposed procedures
in the proteins selected as benchmarks from the CASP8 set (up to 28% of RMSD
improvement with respect to TASSER).

1 Introduction

Proteins are chains of amino acids whose sequence determines its 3D structure af-
ter a folding process. As the 3D structure of a protein exclusively determines its
functionality [1] (transport and transduction of biological signals, the possible en-
zymatic activity of some proteins, etc.), there is a high interest in the determination
of the structure of any given proteins. Experimental methods such as X-ray crystal-
lography and nuclear magnetic resonance (NMR) allow the determination of the 3D
structure of a protein although they are complex and expensive. Thus, only about the
25% of the known proteins has known structures [2]. The so called, protein struc-
ture prediction (PSP) problem is the approach to find the 3D structures of proteins
by using computers.

The procedures for PSP can be classified into two main approaches, template
modeling and template-free or ab initio procedures [3]. Template-based modeling
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are based on the experimental conclusion that homologous proteins have similar
folds and functions. This way, once a homology between the query (newly se-
quenced) protein and some known protein is determined, it is possible to derive
some knowledge about the structure and function of the query protein. The homol-
ogy of two proteins is mainly determined by the similarity of their respective amino
acid sequences. In fact, there is a rule of thumb [4] indicating that two proteins
of about 100 amino acids and 25% of identities in their sequence are related by
evolution with a probability of about 50%. Nevertheless, as there are also proteins
with low levels of sequence similarity but similar structure and function, there are
approaches not based on determining an alignment of their amino acids sequences
but on other techniques such as profile methods, hidden Markov models, sequence
signature libraries, etc.

The ab initio PSP procedures search the protein 3D structure without any knowl-
edge of known structures. Thus, it does not require any homology and it can be
applied when an amino acid sequence is not near to any other known one. Never-
theless, the high dimensionality of the space of conformations makes difficult for an
ab initio procedure to find adequate structures for complex proteins, and nowadays
it seems that template-based modeling is the most reliable and accurate approach to
the protein structure prediction problem. Indeed, ab initio procedures frequently use
searching procedures that start from some initial protein conformations that should
represent an efficient sample of the protein 3D structure space to allow the search
procedure to determine good solutions with high enough probability. Thus, for ex-
ample, the Rosetta structure prediction algorithm [5] uses a two-step approach. In
the first one, the protein is represented by using a low-resolution model based on
the protein-backbone where some selected regions are modified taking into account
a set of fragment libraries. Then, in the second step, the protein is explicitly repre-
sented by all its atoms and a specific energy function (the Rosetta energy function)
is minimized by an optimization procedure.

In any case, the Protein Structure Prediction (PSP) problem remains unsolved
due to the difficulties in the determination of an accurate energy function that
makes it possible the identification of the native structure, and the complexity of
the search process, a consequence of the large dimensionality of the protein con-
formation space and the high number of local minima in the energy landscape [6].
The different (PSP) procedures proposed up to now usually require many accesses
to databases, and a lot of complex processing to determine a plausible protein con-
formation. Many alternatives have been considered to deal with the computing re-
quirements of PSP. Among these, it is possible to enumerate the use of grid or global
computing platforms including public resources [7] and parallel supercomputers [6].
In global computing platforms such as Rosetta@Home [8] and Predictor@Home [7]
(based on BOINC [9]), the computing power is provided by heterogeneous system
of computers interconnected by Internet, with different speeds, architectures, and
operating systems.

In this paper we propose a hybrid template-based and ab initio procedure
(Figure 1) that takes advantage of some common techniques in the template-
based approaches to drive the search implemented by a multi-objective evolutionary
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algorithm towards the most promising zones of the space. This way, our multi-
objective evolutionary algorithm offers the possibility not only to integrate different
state of the art template-based approaches that provide plausible candidate structures
(decoys) but also to take into account the influence of different knowledge-based
potentials without the need to define a cost function that composes their effects.
Moreover, the implicit parallelism shown by evolutionary algorithms can be con-
sidered as an interesting characteristic in order to take advantage of present high
performance and heterogeneous computing platforms, as any of the conformation
in the initial population can be determined in a different server. Once the initial pop-
ulation is built, a parallel platform could efficiently implement the multi-objective
optimization procedure, to determine the best conformation.

Known
Structures
Databases

EDVKAAVAVRG
ATGLEKKAVES
APKDDAKEKAL
LKAEAEEG

Homology analysis 
(TASSER)

Secondary structures 

Feasible proteins

Evolutionary Multi-objective Optimization

Sequence

Rotamers

Constraints

Initial Pop

Rotamers analysis

Amino-acids sequence

Fig. 1 A hybrid PSP process joining databases information and ab initio methods

In the paper, Section 2 introduces the knowledge based methods used in this hy-
brid scheme. The next section describes the concepts related with multi-objective
optimization, and different methods to improve our multi-objective protein struc-
ture predictor by reducing the search complexity and the parallel implementations
of the multi-objective approach to PSP problem. Finally, Section 4 provides the ex-
perimental results, and Section 5 the conclusions of the paper.

2 Knowledge-Based Methods

In this paper we use torsion angles to represent the conformation of the protein.
Three torsion angles are required in the backbone and some additional torsion angles
depending on the side-chain per each amino acid [1].

Although the PSP problem implies to predict the tertiary structure of a given
protein from its primary structure, it could be a good idea to use predictions of
the secondary and super-secondary structures as they give us information about the
amino acids involved in one of these structures, determining some constraints in
the torsion angles of each amino acid. In order to get the super-secondary structure
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given its secondary structure, we have to analyze the conformation of the residues in
the short connecting peptide between two secondary structures. They are classified
into five types, namely, a, b, e, l or t [10]. Sun et al. [10] developed a method to
predict the eleven most frequently occurring super-secondary structures: H-b-H, H-
t-H, H-bb-H, H-ll-E, E-aa-E, H-lbb-H, H-lba-E, E-aal-E, E-aaal-E and H-l-E where
H and E are α helix and β strand, respectively. This way a reduction in the search
space of the PSP problem is obtained.

Dunbrack et al.[11] give many rotamers libraries that help us to identify con-
straints about these torsion angles. These libraries have statistical information about
side-chain torsion angles given the backbone torsion angles.

To be competitive, present ab initio methods should include strategies to start
from good enough solutions or solutions that aid in the searching process. For ex-
ample, as small proteins can be predicted easier than large ones (the conformation
space grows exponentially with the number of amino acids) many procedures divide
the proteins into a number of fragments that are predicted separately by searching
into fragment structure libraries. Then, the fragments are assembled through diffe-
rent alternatives that are sampled by the searching or optimization procedure.The
hybrid scheme here proposed uses different strategies to determine the initial pop-
ulation. The simpler one is to set each variable in the protein conformation to a
random value (using the constraints in the corresponding variable). Other possi-
bility is to use a probabilistic method that considers the rotamer libraries [11] to
set the variables of each amino acid to their most probable value. Moreover, as it
is shown in Fig. 1, it is possible to execute more complex procedures to take into
account the known structures. For example, among the best current approaches for
PSP are TASSER [12] and ROSETTA [5]. TASSER starts with a template identifi-
cation process by iterative threading through the program PROSPECTOR 3, which
is able to identify homologous and analogous templates. Then, the configuration is
divided into continuous aligned fragments with more than five residues, and a Monte
Carlo sampling procedure is applied to generate different assemblies of these pro-
tein fragments. Finally, the clustering program SPICKER is applied for model selec-
tion. ROSETTA also combines small fragments of residues (obtained from known
proteins) by a Monte Carlo strategy. This way, in these procedures some kind of
template-modeling is firstly applied before a random exploration of the conforma-
tion space spanned by different combining alternatives. The solutions provided by
these procedures could be included in the initial population of an evolutionary opti-
mization procedure to help in the search process as those solutions encapsulate the
information about known structures.

3 The Proposed ab initio Multi-objective Approach

Multi-objective optimization [13] can be defined as the problem of finding a vec-
tor (x = [x1,x2, ...,xn]) that satisfies a given restriction set (g(x) ≤ 0,h(x) = 0) and
optimizes the vector of objectives f (x) = { f1(x), f2(x), fm(x)}. The objectives are
usually in conflict between themselves, thus, optimizing one of them is carried out
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at the expense of the others. This leads to the need of making a compromise, which
implies the concept of Pareto optimality. In a multi-objective optimization problem,
a decision vector x* is said to be a Pareto optimal solution if there is not any other
feasible decision vector, x, that improves one objective without worsening at least
one of the other objectives.

In the last few years, some multi-objective approaches to the PSP problem have
been suggested [1, 14]. For example, as indicated in [14], there are works that
demonstrate that some evolutionary algorithms improve their effectiveness when
they are applied to multi-objective algorithms. Indeed, in [1] it is argued that PSP
can be naturally modeled as a multi-objective problem because the protein confor-
mations could involve tradeoffs among different objectives as it is experimentally
shown by analyzing the conflict between bonded and non-bonded energies. More
arguments about the usefulness of multi-objective approaches to PSP based on ef-
fectiveness and problem simplification can be found in [15, 3].

Although a realistic measure of protein conformation quality should probably
imply considering quantum mechanics principles, it would be too computationally
complex to become useful. Thus, as it is usual, we have used the AMBER99 energy
function; in particular, we have used these implemented in the TINKER library
package. We propose a cost function with three objectives: the bond energy, the
non-bond Van Der Waals energy and other for the rest of non-bond terms. A no
formal proof about conflict between bond and non-bond can be found in [1]. Van
Der Waals can hide the other non-bond terms because has higher change range, so
it was separated from them. The algorithm also preserves the known structures with
another objective that measures the similarity to the initial proteins.

We have also included two new strategies to improve the performance of an evo-
lutionary algorithm solving the PSP problem: (1) Simplified search space: In the first
part of the EA the search space is a simplification of the real one. This search space
consists in only one variable, with only four possible values, per amino acid. This
way, the EA can take into account the diversity of the search space. After this pe-
riod, the search space becomes the real one. (2) Amino acid mutation probability: A
new procedure to manage the mutation probabilities has been included. It takes into
account that bond energies are independent of the the location of the correspond-
ing amino acid, whereas the non-bonded energies depend on the present shape and
structure as it is shown in Figure 2. Hence, this procedure tries to mutate with more
probability the amino-acids that make better changes.

As many biological and medical applications, PSP requires intensive computa-
tion capabilities on large and usually distributed databases. It needs high perfor-
mance computing capabilities, not only to reduce the time required to perform
a single prediction, but also to get more accurate 3D protein conformations and
to increase the size of the considered proteins. In [16] four paradigms of parallel
multi-objective optimization evolutionary algorithms (master-worker, island, diffu-
sion and hierarchical) are analyzed with respect to their migration, replacement and
niching schemes, and generic parallel formulations for these parallel procedures are
provided. We have implemented several parallel approaches for our multi-objective
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Fig. 2 Protein evolution: (left) initial protein, (center) changing a torsion angle in a final part
and (right) changing a torsion angle in the center of the protein. It could be more interesting
to generate big changes than little ones

PSP procedure. They are based on NSGA and PAES as it is described in [17]. The
results in this paper corresponds to that obtained by our PAES version.

4 Experimental Results

In this section we analyze the results obtained with our parallel multi-objective al-
gorithms. To evaluate the accuracy of the protein structures found we consider the
RMSD [1] measure that gives the similarity (lower RMSD values are better) be-
tween the predicted and known native 3D structures. We also consider GDT-TS
measure (higher GDT-TS values are better) that compute the percent of residues
that can fit under distance cutoff 1, 2, 4 and 8 Å. We have run our algorithms by
using a benchmark set that includes Free-Modeling proteins in CASP8 of different
sizes and characteristics: T0397, T0416, T0496 and T0513. Initial population use
TASSER results from CASP8, to avoid new knowledge in the Data Bases. Table 1
compares the results obtained with the TASSER [12] algorithm.

We have executed the algorithm along 250.000 cost function evaluations and we
have selected the solution with better RMSD in the Pareto front. As it is shown
in Table 1, the hybrid algorithm provides enough good solutions compared with
TASSER in the free modeling proteins, due to its ab initio behaviour when no much
knowledge can be extracted form the sequence.

Table 1 Provided algorithm (Hybrid PAES, HPAES) versus TASSER approach

Protein # amino-acids HPAES RMSD TASSER RMSD HPAES GDT-TS TASSER GDT-TS
T0397 82 10.981 Å 11.239 Å 28.35 28.96
T0416 52 9.407 Å 12.934 Å 43.27 41.23
T0496 120 11.965 Å 11.885 Å 23.96 23.96
T0513 69 4.292 Å 4.297 Å 67.03 67.03
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Fig. 3 Comparative with CASP8 algorithms in T0397, T0416, T0496 and T0513 proteins
respectively. GDT analysis: largest set of CA atoms (percent of the modeled structure) that
can fit under DISTANCE cutoff: 0.5Å, 1.0Å,..., 10.0Å. Our algorithm is represented by the
thicker line. Other three of the best procedures for T0397 have been selected to show their
relative performance in different proteins

As it is shown in the curves of Figure 3, the relative performance of a given
procedure can change for different proteins. This way, procedures that outperform
ours in T0397 are outperformed in other proteins. As it can be seen in the four
proteins considered, the procedure here proposed is among the best procedures.

5 Conclusions

The PSP problem joins biological and computational concepts. It requires accurate
and tractable models of the conformations energy and there is still a long way to
go to find the procedure that outperforms every other previous approach for all pro-
teins. Our contribution in this paper deals with a new procedure for PSP based on
hybrid multi-objective optimization that makes it possible to join the knowledge
about protein structures (for example provided by template-based modeling) and ab
initio algorithms. It includes strategies to reduce the search space, some heuristics
to improve the quality of the solutions and an initial phase to get enough good solu-
tions based on previous knowledge to initialize the optimization process. Moreover,
our parallel implementation of PAES improves the computation efforts by using an
adaptive probability of mutation in each amino acid. Particular issues for PSP will
be addressed in future work. For instance, more research is required to benefit from
the different meta-stable conformations included in the obtained Pareto front [15].
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Gaspar, Jorge 43
Gaspar-Cunha, António 85
Gil, Ana B. 17
Glez-Peña, Daniel 9, 25
Gomes, Bruno C. 43
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